Align D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= uniprot:A0A1N7TX47 (495 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 352 bits (903), Expect = e-101 Identities = 207/494 (41%), Positives = 293/494 (59%), Gaps = 11/494 (2%) Query: 6 LLQAEHVAKAYAGVPALRDGRLSLRAGSVHALCGGNGAGKSTFLSILMGITQRDAGSILL 65 LLQ + + KA+ GV AL L++ G V AL G NGAGKST + +L GI RDAG++L Sbjct: 4 LLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGTLLW 63 Query: 66 NGAPVQFNRPSEALAAGIAMITQELEPIPYMTVAENIWLGREPRRAGCIVDNKALNRRTR 125 G F P + AGI +I QEL IP +T+AENI+LGRE +D K + Sbjct: 64 LGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKIDWKTMYAEAD 123 Query: 126 ELLDSLEFDVDATSPMHRLSVAQIQLVEIAKAFSHDCQVMIMDEPTSAIGEHEAQTLFKA 185 +LL L + + LS+ Q+VEIAK S + +V+IMDEPT A+ + E ++LF+ Sbjct: 124 KLLAKLNLRFKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTETESLFRV 183 Query: 186 IRRLTAQGAGIVYVSHRLSELAQIADDYSIFRDGAFVESGRMADIDRDHLVRGIVGQELT 245 IR L +QG GIVY+SHR+ E+ +I DD ++FRDG F+ +A + D L+ +VG++L Sbjct: 184 IRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSLIEMMVGRKLE 243 Query: 246 ----RIDHKVGRECAANTCLQVDNLSRAGEFHDISLQLRQGEILGIYGLMGSGRSEFLNC 301 +D G + L+VDNL G +D+S LR+GEILG+ GLMG+GR+E + Sbjct: 244 DQYPHLDKAPG-----DIRLKVDNLCGPG-VNDVSFTLRKGEILGVSGLMGAGRTELMKV 297 Query: 302 IYGLTVADSGSVTLQGKPMPIGLPKATINAGMSLVTEDRKDSGLVLTGSILSNIALSAYK 361 +YG SG VTL G + P+ + G+ ++EDRK GLVL S+ N++L+A + Sbjct: 298 LYGALPRTSGYVTLDGHEVVTRSPQDGLANGIVYISEDRKRDGLVLGMSVKENMSLTALR 357 Query: 362 RLS-SWSLINARKETQLAEDMVKRLQIKTTSLELPVASMSGGNQQKVVLAKCLSTEPVCL 420 S + + E Q D ++ +KT S+E + +SGGNQQKV +A+ L T P L Sbjct: 358 YFSRAGGSLKHADEQQAVSDFIRLFNVKTPSMEQAIGLLSGGNQQKVAIARGLMTRPKVL 417 Query: 421 LCDEPTRGIDEGAKQEIYHLLDQFVRGGGAAIVVSSEAPELLHLSDRIAVFKGGRLVTIS 480 + DEPTRG+D GAK+EIY L++QF G + I+VSSE PE+L +SDRI V G L Sbjct: 418 ILDEPTRGVDVGAKKEIYQLINQFKADGLSIILVSSEMPEVLGMSDRIIVMHEGHLSGEF 477 Query: 481 TDTALSQEALLRLA 494 T +QE L+ A Sbjct: 478 TREQATQEVLMAAA 491 Lambda K H 0.319 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 565 Number of extensions: 25 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 501 Length adjustment: 34 Effective length of query: 461 Effective length of database: 467 Effective search space: 215287 Effective search space used: 215287 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory