Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate 15646 b1525 putative aldehyde dehydrogenase (VIMSS)
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__Keio:15646 Length = 462 Score = 270 bits (690), Expect = 8e-77 Identities = 155/434 (35%), Positives = 229/434 (52%), Gaps = 4/434 (0%) Query: 29 VNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHERAATMRKAAALVRERADAI 88 +NPATG+ + + AG D++ AL A +GF WR+ RA +R +R R++ + Sbjct: 12 INPATGEQLSVLPWAGADDIENALQLAAAGFRDWRETNIDYRAEKLRDIGKALRARSEEM 71 Query: 89 AQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIVPPRNLGAQQTVVK-EPVGP 147 AQ++T+E GKP+ +AR EV +A++ +W+A+ G + P + QQ V++ P+G Sbjct: 72 AQMITREMGKPINQARAEVAKSANLCDWYAEHGPAMLK--AEPTLVENQQAVIEYRPLGT 129 Query: 148 VAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAALLRAFVDAGVPAGVIGLV 207 + A PWNFP+ QV+R + G +L+K + + F DAG+P GV G + Sbjct: 130 ILAIMPWNFPLWQVMRGAVPIILAGNGYLLKHAPNVMGCAQLIAQVFKDAGIPQGVYGWL 189 Query: 208 YGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKRATMELGGHAPVIVAEDAD 267 D +S +I I VT TGS G + + AG +K+ +ELGG P IV DAD Sbjct: 190 NADNDGVSQ-MIKDSRIAAVTVTGSVRAGAAIGAQAGAALKKCVLELGGSDPFIVLNDAD 248 Query: 268 VALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALVKHAEGLKVGNGLEEGTTLG 327 + LAVKAA +++N GQVC + RF++ I FT V A LK+G+ +E LG Sbjct: 249 LELAVKAAVAGRYQNTGQVCAAAKRFIIEEGIASAFTERFVAAAAALKMGDPRDEENALG 308 Query: 328 ALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPTVIANVPLDADVFNNEPFG 387 +A + ++ GA + GGE++ GN++ PTV+ANV + F E FG Sbjct: 309 PMARFDLRDELHHQVEKTLAQGARLLLGGEKMAGAGNYYPPTVLANVTPEMTAFREEMFG 368 Query: 388 PVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQRLEVGMLWINQPATPWPE 447 PVAAI E A+ AN FGL+ FT + RLE G ++IN Sbjct: 369 PVAAITIAKDAEHALELANDSEFGLSATIFTTDETQARQMAARLECGGVFINGYCASDAR 428 Query: 448 MPFGGVKDSGYGSE 461 + FGGVK SG+G E Sbjct: 429 VAFGGVKKSGFGRE 442 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 485 Number of extensions: 22 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 462 Length adjustment: 33 Effective length of query: 448 Effective length of database: 429 Effective search space: 192192 Effective search space used: 192192 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory