Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate 16751 b2661 succinate-semialdehyde dehydrogenase I, NADP-dependent (NCBI)
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__Keio:16751 Length = 482 Score = 373 bits (957), Expect = e-108 Identities = 193/469 (41%), Positives = 274/469 (58%) Query: 10 QLLIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHE 69 Q LI+GEW+DA +G+ IDV NPA G +G V G + A+ AA AWR + A E Sbjct: 12 QALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRALPAWRALTAKE 71 Query: 70 RAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIV 129 RA +R L+ E D +A+LMT EQGKPL EA+ E+ AA IEWFA+EG+R+YG + Sbjct: 72 RATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFAEEGKRIYGDTI 131 Query: 130 PPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAA 189 P + V+K+P+G AA TPWNFP + RK ALA GC+ ++K +TP S A Sbjct: 132 PGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPASQTPFSALA 191 Query: 190 LLRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKR 249 L + AGVPAGV +V G + + L +P++RK++FTGST +G+QL +K+ Sbjct: 192 LAELAIRAGVPAGVFNVVTGSAGAVGNELTSNPLVRKLSFTGSTEIGRQLMEQCAKDIKK 251 Query: 250 ATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALVK 309 ++ELGG+AP IV +DAD+ AV+ A +KFRNAGQ C+ R V + + D F L + Sbjct: 252 VSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLYVQDGVYDRFAEKLQQ 311 Query: 310 HAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPT 369 L +G+GL+ G T+G L + + + + I +A + GA + GG+ GNFF PT Sbjct: 312 AVSKLHIGDGLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGKAHERGGNFFQPT 371 Query: 370 VIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQ 429 ++ +VP +A V E FGP+A + F + IA+AN FGLA Y + R + V + + Sbjct: 372 ILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLAAYFYARDLSRVFRVGE 431 Query: 430 RLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSVTV 478 LE G++ IN PFGG+K SG G EG +E YL K + + Sbjct: 432 ALEYGIVGINTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYMCI 480 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 615 Number of extensions: 19 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 482 Length adjustment: 34 Effective length of query: 447 Effective length of database: 448 Effective search space: 200256 Effective search space used: 200256 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory