Align Xylonate dehydratase (EC 4.2.1.82) (characterized)
to candidate 1937120 b3771 dihydroxy-acid dehydratase (NCBI)
Query= reanno::pseudo6_N2E2:Pf6N2E2_1668 (594 letters) >FitnessBrowser__Keio:1937120 Length = 616 Score = 192 bits (489), Expect = 3e-53 Identities = 166/565 (29%), Positives = 263/565 (46%), Gaps = 77/565 (13%) Query: 35 GMTREELQSGRPIIGIAQTGSDLTPCNRHHLELAQRVKAGIRDAGGIPMEFPVHPIAEQS 94 GMT + G+PII + + + P + H +L + V I AGG+ EF + + Sbjct: 26 GMTDADF--GKPIIAVVNSFTQFVPGHVHLRDLGKLVAEQIEAAGGVAKEFNTIAVDDGI 83 Query: 95 RRPTAAL-----DRNLAYLGLVEILHGYPLDGVVLTTGCDKTTPACLMAAATTDLPAIVL 149 + R L + +++ + D +V + CDK TP LMA+ ++P I + Sbjct: 84 AMGHGGMLYSLPSRELIADSVEYMVNAHCADAMVCISNCDKITPGMLMASLRLNIPVIFV 143 Query: 150 SGGPMLDGHHKGELIGSGTVLWHARNLMAAG---EIDYEGFMEMTTAASPSVGHCNTMGT 206 SGGPM G K + + + M G ++ ++ +A P+ G C+ M T Sbjct: 144 SGGPMEAGKTK---LSDQIIKLDLVDAMIQGADPKVSDSQSDQVERSACPTCGSCSGMFT 200 Query: 207 ALSMNALAEALGMSLPGCASIPAPYRERGQMAYATGKRICDLVR-------QDIRPSQIM 259 A SMN L EALG+S PG S+ A + +R Q+ GKRI +L + + P I Sbjct: 201 ANSMNCLTEALGLSQPGNGSLLATHADRKQLFLNAGKRIVELTKRYYEQNDESALPRNIA 260 Query: 260 TRQAFENAIAVASALGASSNCPPHLIAIARHMGVELSLEDWQRIGEDVPLLVNCMPA-GK 318 ++ AFENA+ + A+G S+N HL+A A+ ++ ++ D ++ VP L P+ K Sbjct: 261 SKAAFENAMTLDIAMGGSTNTVLHLLAAAQEAEIDFTMSDIDKLSRKVPQLCKVAPSTQK 320 Query: 319 YLGEGFHRAGGVPSVMHELQKAGRLHEDCATVSGKTIGEIVSN---SLTSNTDVIHPF-- 373 Y E HRAGGV ++ EL +AG L+ D V G T+ + + LT + V + F Sbjct: 321 YHMEDVHRAGGVIGILGELDRAGLLNRDVKNVLGLTLPQTLEQYDVMLTQDDAVKNMFRA 380 Query: 374 -----------------DT-----------PLKHR----AGFIVLSGNFFDS-AIMKMSV 400 DT L+H G VL GNF ++ I+K + Sbjct: 381 GPAGIRTTQAFSQDCRWDTLDDDRANGCIRSLEHAYSKDGGLAVLYGNFAENGCIVKTAG 440 Query: 401 VGEAFRKTYLSEPGAENSFEARAIVFEGPED-YHARIDDPALDIDERCILVIRGVGTVGY 459 V ++ K F A V+E +D A + + D ++VIR G G Sbjct: 441 VDDSILK-----------FTGPAKVYESQDDAVEAILGGKVVAGD---VVVIRYEGPKGG 486 Query: 460 PGSAEVVNMAPPAALIKQGI-DSLPCLGDGRQSGTSASPSILNMSPEAAVGGGLALLKTN 518 PG E+ + P + L G+ + + DGR SG ++ SI ++SPEAA GG + L++ Sbjct: 487 PGMQEM--LYPTSFLKSMGLGKACALITDGRFSGGTSGLSIGHVSPEAASGGSIGLIEDG 544 Query: 519 DRLKVDLNTRTVNLLIDDAEMAQRR 543 D + +D+ R + L + DAE+A RR Sbjct: 545 DLIAIDIPNRGIQLQVSDAELAARR 569 Lambda K H 0.319 0.135 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 801 Number of extensions: 39 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 594 Length of database: 616 Length adjustment: 37 Effective length of query: 557 Effective length of database: 579 Effective search space: 322503 Effective search space used: 322503 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory