Align Xylose import ATP-binding protein XylG; EC 7.5.2.10 (characterized)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= SwissProt::P37388 (513 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 436 bits (1120), Expect = e-126 Identities = 232/512 (45%), Positives = 335/512 (65%), Gaps = 12/512 (2%) Query: 1 MPYLLEMKNITKTFGSVKAIDNVCLRLNAGEIVSLCGENGSGKSTLMKVLCGIYPHGSYE 60 M LL++K I K F VKA+ L + G +++L GENG+GKST+MKVL GIY + Sbjct: 1 MEALLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDA-- 58 Query: 61 GEIIFAGEEIQASHIRDTERKGIAIIHQELALVKELTVLENIFLGNEITHN-GIMDYDLM 119 G +++ G+E + + ++ GI IIHQEL L+ +LT+ ENIFLG E + G +D+ M Sbjct: 59 GTLLWLGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKIDWKTM 118 Query: 120 TLRCQKLLAQVSLSISPDTRVGDLGLGQQQLVEIAKALNKQVRLLILDEPTASLTEQETS 179 KLLA+++L D VGDL +G QQ+VEIAK L+ + +++I+DEPT +LT+ ET Sbjct: 119 YAEADKLLAKLNLRFKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTETE 178 Query: 180 ILLDIIRDLQQHGIACIYISHKLNEVKAISDTICVIRDGQHIGTRDAAGMSEDDIITMMV 239 L +IR+L+ G +YISH++ E+ I D + V RDGQ I R+ A ++ED +I MMV Sbjct: 179 SLFRVIRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSLIEMMV 238 Query: 240 GRELTALYPNEPHTTGDEILRIEHLTAWHPVNRHIKRVNDVSFSLKRGEILGIAGLVGAG 299 GR+L YP+ GD L++++L VNDVSF+L++GEILG++GL+GAG Sbjct: 239 GRKLEDQYPHLDKAPGDIRLKVDNLCG--------PGVNDVSFTLRKGEILGVSGLMGAG 290 Query: 300 RTETIQCLFGVWPGQWEGKIYIDGKQVDIRNCQQAIAQGIAMVPEDRKRDGIVPVMAVGK 359 RTE ++ L+G P + G + +DG +V R+ Q +A GI + EDRKRDG+V M+V + Sbjct: 291 RTELMKVLYGALP-RTSGYVTLDGHEVVTRSPQDGLANGIVYISEDRKRDGLVLGMSVKE 349 Query: 360 NITLAALNKFTGGISQLDDAAEQKCILESIQQLKVKTSSPDLAIGRLSGGNQQKAILARC 419 N++L AL F+ L A EQ+ + + I+ VKT S + AIG LSGGNQQK +AR Sbjct: 350 NMSLTALRYFSRAGGSLKHADEQQAVSDFIRLFNVKTPSMEQAIGLLSGGNQQKVAIARG 409 Query: 420 LLLNPRILILDEPTRGIDIGAKYEIYKLINQLVQQGIAVIVISSELPEVLGLSDRVLVMH 479 L+ P++LILDEPTRG+D+GAK EIY+LINQ G+++I++SSE+PEVLG+SDR++VMH Sbjct: 410 LMTRPKVLILDEPTRGVDVGAKKEIYQLINQFKADGLSIILVSSEMPEVLGMSDRIIVMH 469 Query: 480 EGKLKANLINHNLTQEQVMEAALRSEHHVEKQ 511 EG L TQE +M AA+ + V ++ Sbjct: 470 EGHLSGEFTREQATQEVLMAAAVGKLNRVNQE 501 Lambda K H 0.319 0.137 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 650 Number of extensions: 32 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 513 Length of database: 501 Length adjustment: 34 Effective length of query: 479 Effective length of database: 467 Effective search space: 223693 Effective search space used: 223693 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory