Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= uniprot:Q9WXX0 (520 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 410 bits (1054), Expect = e-119 Identities = 222/500 (44%), Positives = 325/500 (65%), Gaps = 10/500 (2%) Query: 14 ILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDAGEILV 73 +L+ KGI K FPGV A+ VY +++L+GENGAGKST++K+LTG+ DAG +L Sbjct: 4 LLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGTLLW 63 Query: 74 NGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENYM 133 G+ F P + + GI +IHQELNL +T+AENIFL E V ++D M Sbjct: 64 LGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNR-----FGKIDWKTM 118 Query: 134 YTRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEETE 193 Y + +LL + +F D LV +L+ +QMVEI K L E ++I MDEPT +LT ETE Sbjct: 119 YAEADKLLAKLNLRFKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTETE 178 Query: 194 RLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMMV 253 LF +I LKS+G +V++SHR+ E+ I D + V RDG+ I E + D++I+MMV Sbjct: 179 SLFRVIRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSLIEMMV 238 Query: 254 GREVEF-FPHGIETRPGEIALEVRNLKWKDKVKNVSFEVRKGEVLGFAGLVGAGRTETML 312 GR++E +PH ++ PG+I L+V NL V +VSF +RKGE+LG +GL+GAGRTE M Sbjct: 239 GRKLEDQYPH-LDKAPGDIRLKVDNLCGPG-VNDVSFTLRKGEILGVSGLMGAGRTELMK 296 Query: 313 LVFGVNQKESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDNIVLPSL 372 +++G + SG + ++G +V ++P+D + GI I EDRK GLVL M+VK+N+ L +L Sbjct: 297 VLYGALPRTSGYVTLDGHEVVTRSPQDGLANGIVYISEDRKRDGLVLGMSVKENMSLTAL 356 Query: 373 KKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWLATNADI 432 + SR G L E++ D+++ ++KTPS+ Q LSGGNQQKV +A+ L T + Sbjct: 357 RYFSRAGGSLKHADEQQAVSDFIRLFNVKTPSMEQAIGLLSGGNQQKVAIARGLMTRPKV 416 Query: 433 LIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWEGEITAV 492 LI DEPTRG+DVGAK EI+++I + A G ++I++SSE+PE+L +SDRI+VM EG ++ Sbjct: 417 LILDEPTRGVDVGAKKEIYQLINQFKADGLSIILVSSEMPEVLGMSDRIIVMHEGHLSG- 475 Query: 493 LDNREKRVTQEEIMYYASGQ 512 + ++ TQE +M A G+ Sbjct: 476 -EFTREQATQEVLMAAAVGK 494 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 683 Number of extensions: 32 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 501 Length adjustment: 34 Effective length of query: 486 Effective length of database: 467 Effective search space: 226962 Effective search space used: 226962 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory