Align D-lactate oxidase and glycolate oxidase, FAD-linked subunit (EC 1.1.3.15) (characterized)
to candidate Ga0059261_2631 Ga0059261_2631 FAD/FMN-containing dehydrogenases
Query= reanno::psRCH2:GFF3772 (499 letters) >FitnessBrowser__Korea:Ga0059261_2631 Length = 493 Score = 588 bits (1517), Expect = e-172 Identities = 292/482 (60%), Positives = 358/482 (74%) Query: 18 KAALLAELQAQLPDLDILHRSEDLKPYECDGLSAYRTTPLLVVLPERIEQVETLLKLCHQ 77 +A ++A ++A +P ++ E L+PYE D L+AY PLLVVLPE +EQV +L+ CH+ Sbjct: 12 RAEIVAAMRAIVPGEGVIDALEALRPYESDALTAYAQVPLLVVLPETVEQVAAVLRWCHE 71 Query: 78 RGVPVVARGAGTGLSGGALPLEQGILLVMARFNKILEVDPAGRFARVQPGVRNLAISQAA 137 V VV RGAGT LSGGALPL G+LL MARFN++L++D A R A VQPGV NLAI++A Sbjct: 72 NRVKVVPRGAGTSLSGGALPLADGVLLGMARFNRVLDIDYADRVAVVQPGVTNLAITRAV 131 Query: 138 APYELYYAPDPSSQIACSIGGNVAENAGGVHCLKYGLTVHNLLKVDILTVEGERMTLGSD 197 YYAPDPSSQIAC+IGGNVAEN+GGVHCLKYGLT +N+L V+++T+EGE + LG Sbjct: 132 EDAGFYYAPDPSSQIACTIGGNVAENSGGVHCLKYGLTTNNVLGVELVTIEGEVVRLGGR 191 Query: 198 ALDSPGFDLLALFTGSEGMLGIVTEVTVKLLPKPQVAKVLLAAFDSVEKAGRAVGDIIAA 257 L+ G DLL + GSEG+LG+VTEVTV++LP+P+ AK LL F VE AG V IIAA Sbjct: 192 GLEPAGLDLLGVIVGSEGLLGVVTEVTVRILPRPETAKALLIGFPDVESAGVCVAQIIAA 251 Query: 258 GIIPGGLEMMDNLSIRAAEDFIHAGYPVDAEAILLCELDGVEADVHDDCARVSEVLKLAG 317 GIIP G+EMMD +I AAE F++AGYP+D EA+L+ ELDG A+ V + + G Sbjct: 252 GIIPAGMEMMDKPAINAAEAFVNAGYPLDVEALLIVELDGPGAECGHLTGEVEAIARAHG 311 Query: 318 ATEVRLAKDEAERVRFWAGRKNAFPAVGRISPDYYCMDGTIPRRELPGVLKGISDLSEQF 377 A V+ ++D+AER FWAGRK AFPA GRISPDYYCMDGTIPRR LP VL + LSEQ+ Sbjct: 312 AVSVQASRDDAERALFWAGRKAAFPAAGRISPDYYCMDGTIPRRRLPEVLTRMKALSEQY 371 Query: 378 GLRVANVFHAGDGNMHPLILFDANQPGELERAEDLGGKILELCVKVGGSITGEHGVGREK 437 GL V NVFHAGDGN+HPLIL+DANQPG+LERAE G IL+LCV+VGG +TGEHGVG EK Sbjct: 372 GLGVINVFHAGDGNLHPLILYDANQPGQLERAEAFGADILKLCVEVGGVLTGEHGVGVEK 431 Query: 438 INQMCSQFNADELTLFHAVKAAFDPSGLLNPGKNIPTLHRCAEFGRMHIHNGQLPFPELE 497 + M + F+ +L VK AFDP LLNPGK P LHRCAE GRMH+H GQ+PFPEL Sbjct: 432 RDLMHTMFSETDLAQQQRVKCAFDPELLLNPGKMFPELHRCAELGRMHVHRGQVPFPELP 491 Query: 498 RF 499 RF Sbjct: 492 RF 493 Lambda K H 0.320 0.140 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 748 Number of extensions: 26 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 499 Length of database: 493 Length adjustment: 34 Effective length of query: 465 Effective length of database: 459 Effective search space: 213435 Effective search space used: 213435 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory