Align Acetyl-coenzyme A synthetase; AcCoA synthetase; Acs; Acetate--CoA ligase; Acyl-activating enzyme; EC 6.2.1.1 (characterized)
to candidate Ga0059261_0835 Ga0059261_0835 Acyl-CoA synthetases (AMP-forming)/AMP-acid ligases II
Query= SwissProt::P39062 (572 letters) >lcl|FitnessBrowser__Korea:Ga0059261_0835 Ga0059261_0835 Acyl-CoA synthetases (AMP-forming)/AMP-acid ligases II Length = 582 Score = 169 bits (429), Expect = 2e-46 Identities = 151/523 (28%), Positives = 233/523 (44%), Gaps = 60/523 (11%) Query: 71 DEKYTFKEMKEESNRAGNVLRRYGNVEKGDRVFIFMPRSPELYFIMLGAIKIGAIAGPLF 130 DE+ +F+ R LR G V KGDRV + M PE + A+ IGAI PL Sbjct: 74 DERVSFEANFRAVARLATQLREMG-VGKGDRVALAMRNLPEWPVVFFAAVSIGAILVPLN 132 Query: 131 EAFMEGAVKDRLENSEAKVVVTTPELLERIP--VDKLPHLQHVFVVGGEAESGTNIINYD 188 + G + L +S + V+ T E +R+ + LP L+H+ V G + + Sbjct: 133 AWWTSGELDYGLRDSGSVVLFTDGERYDRLADALPGLPDLKHIVVSRARGPLGEGVRQLE 192 Query: 189 EAAKQESTRLDIEWMDKKDGFL-------------LHYTSGSTGTPKGVLHVHEAMIQQY 235 + + +W + D L + YTSG+TG PKG L H +I Sbjct: 193 DLIGKPG-----DWAELPDAPLPAEPSLVPDDDATIFYTSGTTGHPKGALGTHRNLITNI 247 Query: 236 QTGKWV------------------LDLKEEDIYWCTADPGWVTGTVYGIFAPWLNGATNV 277 + + + L ++ TA + G V+ G T + Sbjct: 248 LSSGYCGARPYLRRGEMPPDPTPRVGLMVIPLFHVTACSASLMGAVFA-------GHTTI 300 Query: 278 IVGGRFSPESWYGTIEQLGVNVWYSAPTAFRMLMGAGDEMAAKYDLTSLRHVLSVGEPLN 337 + ++ E I++ VN+ PT L+ AKYDL+SL + G P Sbjct: 301 FMR-KWDVEQAMEIIQREKVNLTGGVPTIAWQLLE--HPARAKYDLSSLEMIAYGGAPSA 357 Query: 338 PEVIRWGHKVFNKRIHDTWWMTETGSQLICNYPCMDI--KPGSMGKPIPGVEAAIVDNQG 395 PE+++ + F + W MTET + + + D +P S G P+P E I+D +G Sbjct: 358 PELVKRIYTEFGALPGNGWGMTETMAT-VTQHSAEDYLNRPTSAGPPVPVAELKIMDAEG 416 Query: 396 -NELPPYRMGNLAIKKGWPSMMHTIWNNPEKYESYFMPGGWYVSGDSAYMDEEGYFWFQG 454 +ELP +G L K P ++ WN PE+ F G W +GD A +DEEG+ + Sbjct: 417 EHELPIGEVGELWAKG--PMIVKGYWNKPEETAESFRDG-WVRTGDLARVDEEGFLFIVD 473 Query: 455 RVDDVIMTSGERVGPFEVESKLVEHPAIAEAGVIGKPDPVRGEIIKAFIALREGFEPSDK 514 R D+I+ GE + EVE L HPA+ +A +IG P GE A + L G + S+ Sbjct: 474 RAKDIIIRGGENIYSSEVEDVLYAHPAVTDAALIGIPHRTLGEEPVAVVHLAPGKQASE- 532 Query: 515 LKEEIRLFVKQGLAAHAAPREIEF-KDKLPKTRSGKIMRRVLK 556 E++ +V+ LAA P I F +D LP+ +GKI+++ LK Sbjct: 533 --AELQQWVRDRLAAFKVPVAIRFTRDTLPRNANGKILKKDLK 573 Lambda K H 0.318 0.136 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 945 Number of extensions: 50 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 572 Length of database: 582 Length adjustment: 36 Effective length of query: 536 Effective length of database: 546 Effective search space: 292656 Effective search space used: 292656 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory