GapMind for catabolism of small carbon sources

 

Alignments for a candidate for dctA in Sphingomonas koreensis DSMZ 15582

Align Organic acid uptake porter, DctA of 444 aas and 8 - 10 putative TMSs (characterized)
to candidate Ga0059261_1634 Ga0059261_1634 Na+/H+-dicarboxylate symporters

Query= TCDB::Q848I3
         (444 letters)



>FitnessBrowser__Korea:Ga0059261_1634
          Length = 445

 Score =  471 bits (1213), Expect = e-137
 Identities = 234/409 (57%), Positives = 304/409 (74%)

Query: 8   YKSLYFQVIVAIAIGILLGHFYPQTGVALKPLGDGFIKLIKMVIAPIIFCTVVSGIAGMQ 67
           Y  LY QV+VAIA G+ +G+F+P  G +LKPLGD FIKL+KM+IAP+IF T+V+GIAGM 
Sbjct: 19  YGQLYVQVLVAIAAGVSVGYFWPDAGASLKPLGDAFIKLVKMIIAPVIFLTLVTGIAGMT 78

Query: 68  NMKSVGKTGGYALLYFEIVSTIALLIGLVVVNVVQPGNGMHIDVSTLDASKVAAYVTAGK 127
            +KSVG+  G A  YF   ST+AL++GL+V N VQPG GM++D ++LD   V  YV    
Sbjct: 79  ELKSVGRVAGKAFAYFLFFSTLALVVGLIVANTVQPGAGMNVDPASLDTGAVKDYVAKAH 138

Query: 128 DQSIVGFILNVIPNTIVGAFANGDILQVLMFSVIFGFALHRLGAYGKPVLDFIDRFAHVM 187
           D SIVGF++ +IP T+V A     +LQVL+ S++FG AL  +G    PV D +++   V+
Sbjct: 139 DSSIVGFLMAIIPTTLVSALTGESLLQVLLVSILFGIALSMVGEPAAPVRDLLEKTGLVV 198

Query: 188 FNIINMIMKLAPIGALGAMAFTIGAYGVGSLVQLGQLMICFYITCVLFVLVVLGAICRAH 247
           F ++ ++M+ AP+GA GAMAFTIG YG+ SL  L  L+  FY+T  +FV+VVLG + +  
Sbjct: 199 FKLVGILMRAAPVGAFGAMAFTIGKYGIESLANLAGLVATFYLTSAIFVVVVLGVVAKLA 258

Query: 248 GFSVLKLIRYIREELLIVLGTSSSESALPRMLIKMERLGAKKSVVGLVIPTGYSFNLDGT 307
           GFS+ KLIRY+R ELL+VLGTSSSESALP ++ KMER G  K VVGLV+PTGYSFNLDGT
Sbjct: 259 GFSIFKLIRYLRAELLLVLGTSSSESALPSLMDKMERAGCAKPVVGLVVPTGYSFNLDGT 318

Query: 308 SIYLTMAAVFIAQATDTHMDITHQITLLLVLLLSSKGAAGVTGSGFIVLAATLSAVGHLP 367
           +IY+T+AA+FIAQA +  + +  QI LL + ++SSKGAAGVTG+GFI LAATLS V  +P
Sbjct: 319 NIYMTLAALFIAQACNVDLSLGDQIALLAIAMISSKGAAGVTGAGFITLAATLSIVPDVP 378

Query: 368 VAGLALILGIDRFMSEARALTNLVGNAVATVVVAKWVKELDEDQLQAEL 416
           VAG+ALILGIDRFMSE R+LTN +GNAVAT+VVA+W   LD   L   L
Sbjct: 379 VAGMALILGIDRFMSECRSLTNFIGNAVATIVVARWDNALDTAALHHAL 427


Lambda     K      H
   0.326    0.142    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 560
Number of extensions: 11
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 444
Length of database: 445
Length adjustment: 32
Effective length of query: 412
Effective length of database: 413
Effective search space:   170156
Effective search space used:   170156
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory