Align Ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) (characterized)
to candidate Ga0059261_3374 Ga0059261_3374 NAD-dependent aldehyde dehydrogenases
Query= reanno::Smeli:SM_b20891 (477 letters) >lcl|FitnessBrowser__Korea:Ga0059261_3374 Ga0059261_3374 NAD-dependent aldehyde dehydrogenases Length = 474 Score = 271 bits (692), Expect = 5e-77 Identities = 180/484 (37%), Positives = 259/484 (53%), Gaps = 39/484 (8%) Query: 5 QNLIAGEWVGGDGVAN---INPSNTDDVVGEYARASAEDAKAAIAAAKAAFPAWSRSGIL 61 ++ I GEWV +G INP+ T+ V E S DA A+AAAKAAF ++SR+ + Sbjct: 6 KHYIGGEWVESEGGTRHDVINPA-TEAPVTEITLGSEADADKAVAAAKAAFDSFSRTSVD 64 Query: 62 ERHAILKKTADEILARKDELGRLLSREEGKTLA--------EGIGE---TVRAGQIFEFF 110 ER A+L+ E R +L ++ E G ++ GIG T+ A + FEF Sbjct: 65 ERIALLEAILAEYKNRAGDLADAIAAEMGAPISLAKTAQVGSGIGHLMSTINALKAFEFS 124 Query: 111 A--GETLRLAGEVVPSVRPGIGVEITREPAGVVGIITPWNFPIAIPAWKLAPALCYGNTI 168 G++L + EP GVV +ITPWN+P+ K+APAL GNT+ Sbjct: 125 EQIGQSL-----------------VVHEPIGVVALITPWNWPLNQIVAKVAPALAAGNTM 167 Query: 169 VFKPAELVPGCSWAIVDILHRAGLPKGVLNLVMGKGSVVGQAMLDSPDVQAITFTGSTAT 228 V KP+E PG + +I+ +AG+P GV NLV G G +VG A+ DV ++FTGST Sbjct: 168 VLKPSEEAPGSAAIFAEIMDKAGVPAGVFNLVQGDGPIVGTALSRHRDVDMVSFTGSTRA 227 Query: 229 GKRVAVASVEHNRKYQLEMGGKNPFVVLDDADLSVAVEAAVNSAFFSTGQRCTASSRIIV 288 G +VA + E ++ E+GGK+P V+L ADLS AV+ + S ++GQ C A +R++V Sbjct: 228 GIQVAKNAAETVKRVHQELGGKSPNVILPGADLSRAVQVGLFSVVMNSGQSCIAPARMLV 287 Query: 289 TEGIHDRFVAAMGERIKGLVVDDALKPGTHIGPVVDQSQLNQDTDYIAIGKQEGAKLAFG 348 E +K + D + G HIGPVV+++Q + I G +EGAKL G Sbjct: 288 HESQAAEAAQIASGLMKAVETGDPAQEGRHIGPVVNKAQWEKIQGLIRKGMEEGAKLETG 347 Query: 349 GEVISRD-TPGFYLQPALFTEATNEMRISREEIFGPVAAVIRVKDYDEALAVANDTPFGL 407 G G++++P LF+ N+M I+REEIFGPV +I +D +EA+ +ANDT +GL Sbjct: 348 GPGRPDGIETGYFVKPTLFSGVRNDMTIAREEIFGPVITIIPYRDEEEAVRIANDTDYGL 407 Query: 408 SSGIATTSLKHATHFKRNAEAGMVMVNLPTAGVDFHVPFGGRKASSYGPREQGKYAAEFY 467 S+ + S + AGMV +N D +PFGG K S G RE GK+ + Sbjct: 408 SA-VLFGSPEEVKRVAPRLRAGMVYIN--GGQPDPSLPFGGYKQSGNG-REHGKFGLAEF 463 Query: 468 TNVK 471 VK Sbjct: 464 MEVK 467 Lambda K H 0.317 0.134 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 572 Number of extensions: 31 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 474 Length adjustment: 33 Effective length of query: 444 Effective length of database: 441 Effective search space: 195804 Effective search space used: 195804 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory