Align asparagine synthase (glutamine-hydrolysing) (EC 6.3.5.4) (characterized)
to candidate Ga0059261_3119 Ga0059261_3119 asparagine synthase (glutamine-hydrolyzing)
Query= BRENDA::P22106 (554 letters) >FitnessBrowser__Korea:Ga0059261_3119 Length = 616 Score = 139 bits (351), Expect = 2e-37 Identities = 121/374 (32%), Positives = 188/374 (50%), Gaps = 62/374 (16%) Query: 28 MRHRGPDWSGIYASDNAI--LAHERLSIVDVNAGA-QPLYNQQKTHVLAVNGEIYNHQAL 84 + HRGPD +G + S + LA RL+I+D++ G QP++ + + NGEIYN + L Sbjct: 26 LHHRGPDDTGQWWSPDGRVGLAQARLAIIDLSPGGHQPMHREADRLSVVFNGEIYNFRDL 85 Query: 85 RAEY-GDRYQFQTGSDCEVILALYQEKGPEFLDDLQGMFAFALYDSEKDAYLIGRDHLGI 143 RAE G + F++ SD EV+LA Y + G L L GMFAFA++D+ + RD G Sbjct: 86 RAELEGLGHVFRSHSDTEVLLAAYAQWGIGCLTRLNGMFAFAIFDARANKVYFARDRAGE 145 Query: 144 IPLYMGYDEHGQLYVASEMKALVP---VCRTIKEFPAGSYLWSQ----DGEIRSYY---- 192 PL+ + +G ++ ASE+K L+ + R I YL + DG I + Y Sbjct: 146 KPLFY-HAANGTIHFASELKTLLADPTLPRVIDPAALDGYLLTGYVPGDGCILAGYRKLP 204 Query: 193 -------------HRDWF-----DYDAVKDNVTDK-NELRQALEDSVKSHLMSDVPYGVL 233 HR W DY V+D+ EL LED+V L++DVP GVL Sbjct: 205 PGHAMELDLSSGAHRVWRYWNLPDYAPVEDDDAGLLGELEALLEDAVGRQLVADVPVGVL 264 Query: 234 LSGGLDSSIISAITKKYAARRVEDQERSEAWWPQLHSFAVGLPGS---PDLKAAQEVANH 290 LSGG+DSS+I+A+ + AA+ + +F +G G+ +++ A+ +A+H Sbjct: 265 LSGGVDSSLITAMAVRNAAK--------------VRTFTIGFAGAGPLNEIEHARLIADH 310 Query: 291 LGTVHHEI--HFTVQEGLDAIRDVIYHIETYDVTTIRAST-PMYLMSRKIKAMGIKMVLS 347 GT E+ TV E L + +D +S P +++S ++ + L Sbjct: 311 FGTEQVELMAEPTVAELLPRL------AAQFDEPMADSSMFPTFMVSELVR-QHCTVALG 363 Query: 348 GEGSDEVFGGYLYF 361 G+G DE+FGGY ++ Sbjct: 364 GDGGDELFGGYGHY 377 Score = 26.2 bits (56), Expect = 0.004 Identities = 19/97 (19%), Positives = 41/97 (42%), Gaps = 3/97 (3%) Query: 360 YFHKAPNAKELHEETVRKLLALHMYD--CARANKAMSAWGVEARVPFLDKKFLDVAMRIN 417 Y + P +L + R ++ + + ++ +E R PFLD + ++ A Sbjct: 455 YRSRIPAMDDLLQRATRTDFGTYLSEDILVKVDRTSMLTSLEVRAPFLDHRLIEFAFGKV 514 Query: 418 PQDKMCGNGKMEKHILRECFEAYLPASVAWRQKEQFS 454 P ++ +K +L++ LP ++K+ FS Sbjct: 515 P-SRLKATASDKKILLKQLAARVLPPQFDRQRKQGFS 550 Lambda K H 0.319 0.135 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 745 Number of extensions: 39 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 554 Length of database: 616 Length adjustment: 36 Effective length of query: 518 Effective length of database: 580 Effective search space: 300440 Effective search space used: 300440 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory