Align 1-pyrroline-5-carboxylate dehydrogenase 2; P5C dehydrogenase 2; L-glutamate gamma-semialdehyde dehydrogenase; EC 1.2.1.88 (characterized)
to candidate Ga0059261_3374 Ga0059261_3374 NAD-dependent aldehyde dehydrogenases
Query= SwissProt::P94391 (515 letters) >lcl|FitnessBrowser__Korea:Ga0059261_3374 Ga0059261_3374 NAD-dependent aldehyde dehydrogenases Length = 474 Score = 220 bits (560), Expect = 1e-61 Identities = 152/478 (31%), Positives = 242/478 (50%), Gaps = 24/478 (5%) Query: 41 INGERVETEA--KIVSINPADKEEVVGRVSKASQEHAEQAIQAAAKAFEEWRYTSPEERA 98 I GE VE+E + INPA E V ++ S+ A++A+ AA AF+ + TS +ER Sbjct: 9 IGGEWVESEGGTRHDVINPAT-EAPVTEITLGSEADADKAVAAAKAAFDSFSRTSVDERI 67 Query: 99 AVLFRAAAKVRRRKHEFSALLVKEAGKPWNEAD-ADTAEAIDFMEYYARQMIELAKGKPV 157 A+L A+ + R + + + E G P + A A I + I K Sbjct: 68 ALLEAILAEYKNRAGDLADAIAAEMGAPISLAKTAQVGSGIGHL----MSTINALKAFEF 123 Query: 158 NSREGEKNQYVYTPTGVTVVIPPWNFLFAIMAGTTVAPIVTGNTVVLKPASATPVIAAKF 217 + + G+ + V+ P GV +I PWN+ + + GNT+VLKP+ P AA F Sbjct: 124 SEQIGQ-SLVVHEPIGVVALITPWNWPLNQIVAKVAPALAAGNTMVLKPSEEAPGSAAIF 182 Query: 218 VEVLEESGLPKGVVNFVPGSGAEVGDYLVDHPKTSLITFTGSREVGTRIFERAAKVQPGQ 277 E+++++G+P GV N V G G VG L H +++FTGS G ++ + AA+ Sbjct: 183 AEIMDKAGVPAGVFNLVQGDGPIVGTALSRHRDVDMVSFTGSTRAGIQVAKNAAET---- 238 Query: 278 QHLKRVIAEMGGKDTVVVDEDADIELAAQSIFTSAFGFAGQKCSAGSRAVVHEKVYDQVL 337 +KRV E+GGK V+ AD+ A Q S +GQ C A +R +VHE + Sbjct: 239 --VKRVHQELGGKSPNVILPGADLSRAVQVGLFSVVMNSGQSCIAPARMLVHESQAAEAA 296 Query: 338 ERVIEITESKVTAKPDSADVYMGPVIDQGSYDKIMSYIEIGKQEG-RLVSGGTGDD---S 393 + + ++ T P ++GPV+++ ++KI I G +EG +L +GG G Sbjct: 297 QIASGLMKAVETGDPAQEGRHIGPVVNKAQWEKIQGLIRKGMEEGAKLETGGPGRPDGIE 356 Query: 394 KGYFIKPTIFADLDPKARLMQEEIFGPVVAFCKVSDFDEALEVANNTEYGLTGAVITNNR 453 GYF+KPT+F+ + + +EEIFGPV+ D +EA+ +AN+T+YGL+ AV+ + Sbjct: 357 TGYFVKPTLFSGVRNDMTIAREEIFGPVITIIPYRDEEEAVRIANDTDYGLS-AVLFGSP 415 Query: 454 KHIERAKQEFHVGNLYFNRNCTGAIVGYHPFGGFKMSGTDSKAGGPDYLALHMQAKTI 511 + ++R G +Y N + PFGG+K SG + + G LA M+ K + Sbjct: 416 EEVKRVAPRLRAGMVYINGGQPDPSL---PFGGYKQSG-NGREHGKFGLAEFMEVKAM 469 Lambda K H 0.316 0.133 0.379 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 607 Number of extensions: 33 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 474 Length adjustment: 34 Effective length of query: 481 Effective length of database: 440 Effective search space: 211640 Effective search space used: 211640 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory