Align Putative acyl-CoA dehydrogenase AidB; EC 1.3.99.- (characterized)
to candidate Ga0059261_0740 Ga0059261_0740 Acyl-CoA dehydrogenases
Query= SwissProt::P33224 (541 letters) >FitnessBrowser__Korea:Ga0059261_0740 Length = 540 Score = 392 bits (1006), Expect = e-113 Identities = 227/517 (43%), Positives = 302/517 (58%), Gaps = 13/517 (2%) Query: 5 THTVFNQPIPLNNSNLYLSDGALCEAVTREGAGWDSDFLASIGQQLGTAESLELGRLANV 64 TH V NQP P NL+ D AL +AV R G + L S+G + G+AE ++ G AN Sbjct: 12 THEVLNQPPPFEEVNLFTGDRALADAVARAGGARHRERLTSLGARCGSAEVIDWGVEANR 71 Query: 65 NPPELLRYDAQGRRLDDVRFHPAWHLLMQALCTNRVHNLAWEEDARSGAFVARAARFMLH 124 N P L YD G+R+D+VRFHPA+H LM+ + + ++AW D VA AA L Sbjct: 72 NIPVLESYDRFGQRIDEVRFHPAYHQLMRLGLDSGLASVAW--DGTPAGHVAHAAILFLT 129 Query: 125 AQVEAGSLCPITMTFAATPLLLQMLPAPFQDWTTPLLSDRYDSHLLPGGQKRGLLIGMGM 184 Q ++G+ CP+TMT+AA P L + +W + + YD P +K G+ IGM M Sbjct: 130 GQADSGTSCPMTMTYAAVPAL-RADEGVAGEWVPRITAGLYDPASRPAAEKAGVTIGMAM 188 Query: 185 TEKQGGSDVMSNTTRAERL-EDGSYRLVGHKWFFSVPQSDAHLVLAQTAGGLSCFFVPRF 243 TEKQGGSDV +NTTRAE E G Y L GHKWF S P DA L LA GGL+CF VPR+ Sbjct: 189 TEKQGGSDVRANTTRAEPAGEAGWYSLTGHKWFCSAPMCDAFLTLAYAQGGLTCFLVPRW 248 Query: 244 LPDGQRNA-IRLERLKDKLGNRSNASCEVEFQDAIGWLLGLEGEGIRLILKMGGMTRFDC 302 LPDG RNA R+ RLKDKLG+RSNAS E+E+ A+ LG EG G+ I++M TR DC Sbjct: 249 LPDGTRNAGFRVMRLKDKLGDRSNASSEIEYHGALAQRLGEEGRGVATIIQMVQHTRLDC 308 Query: 303 ALGSHAMMRRAFSLAIYHAHQRHVFGNPLIQQPLMRHVLSRMALQLEGQTALLFRLARAW 362 +GS MR A + A++H R F LI QP M VL+ +A++ E T L RLA+A+ Sbjct: 309 VIGSAQQMRGALAQALWHTAHRSAFQRRLIDQPAMAAVLADLAVESEAATVLGLRLAQAF 368 Query: 363 DRRADAKEALWARLFTPAAKFVICKRGMPFVAEAMEVLGGIGYCEESELPRLYREMPVNS 422 D ARL TP AK+ +CKR V EAME GG GY E +PRL+R+ P+N+ Sbjct: 369 DEADPV-----ARLLTPIAKYWVCKRAPGLVYEAMECHGGGGYIEAGPMPRLFRQSPLNA 423 Query: 423 IWEGSGNIMCLDVLRVLNKQAGVYDLLSEAFVEVKGQDRYFDRAVRRLQQQLRKPAEELG 482 IWEGSGN++ LD+LR + ++ G + L+ +G+D +D + + L+ E Sbjct: 424 IWEGSGNVIALDLLRAIGREPGGVEALNGFLAAQRGRDAAYDAWIGVI--DLKSAHEGNA 481 Query: 483 REITHQLFLLGCGAQMLKYASPPMAQAWCQVMLDTRG 519 R QL L A +L + SP A A+C++ L RG Sbjct: 482 RLCVEQLALAAQAAVLLGWDSPG-ADAFCRLRLSPRG 517 Lambda K H 0.324 0.138 0.428 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 733 Number of extensions: 34 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 541 Length of database: 540 Length adjustment: 35 Effective length of query: 506 Effective length of database: 505 Effective search space: 255530 Effective search space used: 255530 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory