Align Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial; MCCase subunit alpha; 3-methylcrotonyl-CoA carboxylase 1; 3-methylcrotonyl-CoA:carbon dioxide ligase subunit alpha; EC 6.4.1.4 (characterized)
to candidate Ga0059261_0292 Ga0059261_0292 acetyl-CoA carboxylase, biotin carboxylase subunit
Query= SwissProt::Q2QMG2 (737 letters) >lcl|FitnessBrowser__Korea:Ga0059261_0292 Ga0059261_0292 acetyl-CoA carboxylase, biotin carboxylase subunit Length = 454 Score = 430 bits (1106), Expect = e-125 Identities = 228/447 (51%), Positives = 298/447 (66%), Gaps = 6/447 (1%) Query: 39 VEKVLVANRGEIACRVMRTARRLGIPTVAVYSDADRGALHVRAADEAVRLGPPPARESYL 98 ++K+L+ANRGEIA R+ R +GI TVAV+S AD A+HVR AD+AV +GPP A +SYL Sbjct: 4 IKKLLIANRGEIALRIHRACHEMGIKTVAVHSTADADAMHVRLADQAVCIGPPAAADSYL 63 Query: 99 NASAIVDAALRTGAKAIHPGYGFLSESADFAQLCKAEGLTFIGPPPSAIRDMGDKSASKR 158 N I+ AA +GA AIHPGYGFLSE+A FA++ + L F+GP P IR MGDK +KR Sbjct: 64 NIPNIISAAEISGADAIHPGYGFLSENAKFAEIVELHNLIFVGPKPEHIRVMGDKVEAKR 123 Query: 159 IMGAAGVPLVPGYHGAEQDIELLKLEANKIGYPVLIKPTHGGGGKGMRIVQRPEDFVDSV 218 GA G+PLVPG GA D+E K A +IGYPV+IK GGGG+GM++ P+ F + Sbjct: 124 TAGALGLPLVPGSDGAISDVEEAKKLAAEIGYPVIIKAASGGGGRGMKVCTDPDQFETLM 183 Query: 219 LSAQREAAASFGINTLLVEKYITQPRHIEVQIFGDQHGNVIHLYERDCSLQRRHQKIIEE 278 A EA A+FG T+ +EKY+ PRHIE+Q+FGD +GN IHL ERDCSLQRRHQK++EE Sbjct: 184 QQAGSEAKAAFGDATVYLEKYLGNPRHIEIQVFGDGNGNAIHLGERDCSLQRRHQKVLEE 243 Query: 279 APAPNVTAQFRSHIGEAAVSAAKAVGYYSAGTVEFIVDTLSGEFYFMEMNTRLQVEHPVT 338 AP+P ++ + R+ IGE A +GY AGT+EF+ + +GEFYF+EMNTRLQVEHPVT Sbjct: 244 APSPVLSTEERNRIGEICAKAMADMGYRGAGTIEFLWE--NGEFYFIEMNTRLQVEHPVT 301 Query: 339 EMIVGQDLVEWQIRIANGECLPLSQEQVPLNGHAFEARIYAENVPRGFLPATGTLHHYRP 398 E I G DLV QIR+A G L L QE V GHA E RI AE+ PR F P+ G + Y Sbjct: 302 EAITGLDLVREQIRVAEGHGLTLRQEDVQFRGHAIECRINAED-PRTFAPSPGRVSQYH- 359 Query: 399 VPSTATVRVETGVEEGDTVSMHYDPMIAKLVVWGESRNAALVKLKNSLSNFQIA--GLPT 456 P VRV++G+ G V +YD MIAKL+V+G +R AL +L+ +L F I G+ T Sbjct: 360 APGGMNVRVDSGLYSGYKVPPYYDSMIAKLIVYGTTRQGALRRLRRALEEFVIEGDGMKT 419 Query: 457 NVGFLQELAGHSAFEKGLVDTHFIERY 483 + Q L + F++G ++E + Sbjct: 420 TIPLHQALLDNPQFQQGDYTIKWLEEW 446 Lambda K H 0.317 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 773 Number of extensions: 35 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 737 Length of database: 454 Length adjustment: 36 Effective length of query: 701 Effective length of database: 418 Effective search space: 293018 Effective search space used: 293018 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory