Align phenylacetate-CoA ligase (EC 6.2.1.30) (characterized)
to candidate Ga0059261_0835 Ga0059261_0835 Acyl-CoA synthetases (AMP-forming)/AMP-acid ligases II
Query= BRENDA::D3GE78 (556 letters) >FitnessBrowser__Korea:Ga0059261_0835 Length = 582 Score = 215 bits (547), Expect = 4e-60 Identities = 160/513 (31%), Positives = 246/513 (47%), Gaps = 41/513 (7%) Query: 57 RLAAGLRKSGLQRGDRVLLFSGNDLFFPVVFLGVIMAGGIFTGANPTFVARELAYQLQDS 116 RLA LR+ G+ +GDRV L N +PVVF + G I N + + EL Y L+DS Sbjct: 88 RLATQLREMGVGKGDRVALAMRNLPEWPVVFFAAVSIGAILVPLNAWWTSGELDYGLRDS 147 Query: 117 GATYLLCASNSLETGLEAAKQAKLPQ-SHIFAYDTSIYDGVTNPQ-KGCAYWSDLLASEE 174 G+ L + +A LP HI + P +G DL+ Sbjct: 148 GSVVLFTDGERYDRLADALPG--LPDLKHI------VVSRARGPLGEGVRQLEDLI---- 195 Query: 175 EGAAFTWDELSTPALSSTT-------LALNYSSGTTGRPKGVEISHRNYVANMLQ----- 222 G W EL L + + Y+SGTTG PKG +HRN + N+L Sbjct: 196 -GKPGDWAELPDAPLPAEPSLVPDDDATIFYTSGTTGHPKGALGTHRNLITNILSSGYCG 254 Query: 223 ---YCHTASLHPDYKARLERSRWLCFLPMYHAMAQNIFIAAALYRATPVYIMSKFDFVKM 279 Y + PD R+ L +P++H A + + A++ M K+D + Sbjct: 255 ARPYLRRGEMPPDPTPRVG----LMVIPLFHVTACSASLMGAVFAGHTTIFMRKWDVEQA 310 Query: 280 LEYTQRFRITDFILVPPVVVALAKHPAVGQYDLSSVELVGSGAAPLGREVCEEVEKLWPP 339 +E QR ++ VP + L +HPA +YDLSS+E++ G AP E+ V++++ Sbjct: 311 MEIIQREKVNLTGGVPTIAWQLLEHPARAKYDLSSLEMIAYGGAPSAPEL---VKRIYTE 367 Query: 340 GKINIKQGWGMTEATCSVTGWNPAE-ISTSASVGELNANCEAKIM-FDGVEVKERNSRGE 397 GWGMTE +VT + + ++ S G E KIM +G GE Sbjct: 368 FGALPGNGWGMTETMATVTQHSAEDYLNRPTSAGPPVPVAELKIMDAEGEHELPIGEVGE 427 Query: 398 LWVRAPNVMKGYWRNEKATKETKTEDGWLLTGDIAFVDDDGKFHVVDRMKELIKVKGNQV 457 LW + P ++KGYW + T E+ DGW+ TGD+A VD++G +VDR K++I G + Sbjct: 428 LWAKGPMIVKGYWNKPEETAES-FRDGWVRTGDLARVDEEGFLFIVDRAKDIIIRGGENI 486 Query: 458 APAELEALLLEHPAISDVAVIGVVINN-DERPRAYVVLRPGQSATANEIAHYLDNKVSAF 516 +E+E +L HPA++D A+IG+ E P A V L PG+ A+ E+ ++ ++++AF Sbjct: 487 YSSEVEDVLYAHPAVTDAALIGIPHRTLGEEPVAVVHLAPGKQASEAELQQWVRDRLAAF 546 Query: 517 KRITGGVVFLEAIPKNPSGKILRMKLREQAKEE 549 K + +P+N +GKIL+ L+ EE Sbjct: 547 KVPVAIRFTRDTLPRNANGKILKKDLKGLFAEE 579 Lambda K H 0.319 0.134 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 713 Number of extensions: 34 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 556 Length of database: 582 Length adjustment: 36 Effective length of query: 520 Effective length of database: 546 Effective search space: 283920 Effective search space used: 283920 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory