Align phenylacetaldehyde dehydrogenase (EC 1.2.1.39) (characterized)
to candidate Ga0059261_1680 Ga0059261_1680 NAD-dependent aldehyde dehydrogenases
Query= BRENDA::Q5P171 (474 letters) >FitnessBrowser__Korea:Ga0059261_1680 Length = 469 Score = 554 bits (1428), Expect = e-162 Identities = 270/468 (57%), Positives = 341/468 (72%), Gaps = 5/468 (1%) Query: 6 MIINGKPVRAGSTFDVVNPATGEVFARVQAGDASHVDQAVAAARAAFPGWSRTPDAERKR 65 +I++GKP+ TF V++PATG FA + +D AVAAAR AFPGW+ TP +R Sbjct: 6 LIVDGKPLAMAETFPVIDPATGRPFADAPLASTADLDAAVAAARRAFPGWAATPIEDRAA 65 Query: 66 LMHALGAALEAHMPELMELVTKEAGKPLGGLNGVGSGMEVGGAIAWTHVTADLELPVEVI 125 + A+ ++EA EL L++ E GKP+ N VG E+ GA+AW TA L V+V+ Sbjct: 66 AILAIADSIEAAKDELARLLSAEQGKPVP--NAVG---EIMGALAWARATAGLRPAVDVL 120 Query: 126 QDNDDARIEVHRKPLGVVGSITPWNWPLMIAIWHVIPALRAGNTVVIKPSGMTPTATIRF 185 +D+D R+EVHRKPLGVV SI+PWN+P+MIAIWH+IP L AGNTVV+KPS TP A +R Sbjct: 121 KDDDSVRVEVHRKPLGVVASISPWNFPVMIAIWHIIPGLVAGNTVVMKPSSFTPLAALRM 180 Query: 186 VELANAILPPGVLNIVTGESGVGSAIAKHPDINKIVFTGSTPTGKNIMQNAAGNLKRLTL 245 VE+ANA LPPGVLN VTGE +G AIA HP I+KIVFTGSTPTG++IM + A NLKRLTL Sbjct: 181 VEIANAHLPPGVLNSVTGEVEIGRAIASHPGIDKIVFTGSTPTGRSIMADGAANLKRLTL 240 Query: 246 ELGGNDAGIVLPDVDPKAIAPKLFGVGFHNNGQTCACLKRLYVHDSIYEKVCAELARIAK 305 ELGGNDA IVLPD D +A K+F F N+GQ CA +KR+YVH+SI++ + +LA +A+ Sbjct: 241 ELGGNDAAIVLPDADVDKVAAKIFAKAFGNSGQICAAVKRVYVHESIHDALAEKLAEMAR 300 Query: 306 ETVVGDGLVEGTELGPVQNKAQLDFVQELVEDARAHGARILSGGKARSGGGFFFEPTVIA 365 VVG G ++ GPVQN+ Q D V+ L +DARAHG R L+GG+AR G G+FF +V+ Sbjct: 301 TAVVGPGSDAASQFGPVQNRKQFDLVRALADDARAHGGRFLAGGEAREGDGYFFPLSVVV 360 Query: 366 DAKDGMRVVDEEQFGPVLPVIRYSDIEEVIARANNNENGLGGSIWSKDHAKAAELALRLE 425 D DGMR+VDEEQFGP+LPVIRYSD E+ +ARAN NENGLGGS+WS D A A A RLE Sbjct: 361 DVTDGMRIVDEEQFGPILPVIRYSDPEDALARANANENGLGGSVWSADPAAALAFAQRLE 420 Query: 426 CGTAWVNEHGAVQPDAPFGGVKQSGLGVEFGRYGLEEYTSIQTLKIMK 473 GT WVN+H ++ PD PFGG KQSG+G EFG YGLEEY +QT+++ K Sbjct: 421 AGTVWVNDHASISPDVPFGGAKQSGVGTEFGLYGLEEYMQLQTVRVAK 468 Lambda K H 0.317 0.136 0.405 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 749 Number of extensions: 48 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 474 Length of database: 469 Length adjustment: 33 Effective length of query: 441 Effective length of database: 436 Effective search space: 192276 Effective search space used: 192276 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory