Align phenylacetaldehyde dehydrogenase monomer (EC 1.2.1.39) (characterized)
to candidate Ga0059261_3374 Ga0059261_3374 NAD-dependent aldehyde dehydrogenases
Query= metacyc::MONOMER-15732 (497 letters) >FitnessBrowser__Korea:Ga0059261_3374 Length = 474 Score = 290 bits (741), Expect = 1e-82 Identities = 177/481 (36%), Positives = 255/481 (53%), Gaps = 20/481 (4%) Query: 19 LKMRIGADWQDAASGRTLSFRNPATGEVLGEVPAADAEDVDRAVRAARQAFDDSPWSRLR 78 LK IG +W ++ G NPAT + E+ D D+AV AA+ AFD +SR Sbjct: 5 LKHYIGGEWVESEGGTRHDVINPATEAPVTEITLGSEADADKAVAAAKAAFDS--FSRTS 62 Query: 79 PRERQNLLWRLADLMERDARQLAELECLNNGKSAAVAQVMDVQLAIDFLRYMAGWATKIE 138 ER LL + + A LA+ G ++A+ V I L Sbjct: 63 VDERIALLEAILAEYKNRAGDLADAIAAEMGAPISLAKTAQVGSGIGHLM---------- 112 Query: 139 GSTVEASMPLMPNDQF-HGFVRREAIGVVGAIVAWNFPLLLACWKLGPALATGCTIVLKP 197 ST+ A ++Q V E IGVV I WN+PL K+ PALA G T+VLKP Sbjct: 113 -STINALKAFEFSEQIGQSLVVHEPIGVVALITPWNWPLNQIVAKVAPALAAGNTMVLKP 171 Query: 198 ADETPLSVLKLAELVDEAGYPAGVFNVVTGTGLNAGAALSRHPGVDKLTFTGSTEVGKLI 257 ++E P S AE++D+AG PAGVFN+V G G G ALSRH VD ++FTGST G + Sbjct: 172 SEEAPGSAAIFAEIMDKAGVPAGVFNLVQGDGPIVGTALSRHRDVDMVSFTGSTRAGIQV 231 Query: 258 GKAAMDNMTRVTLELGGKSPTIVMPDANLQEAAAGAATAIFFNQGQVCCAGSRLYVHRKH 317 K A + + RV ELGGKSP +++P A+L A ++ N GQ C A +R+ VH Sbjct: 232 AKNAAETVKRVHQELGGKSPNVILPGADLSRAVQVGLFSVVMNSGQSCIAPARMLVHESQ 291 Query: 318 FDNVVADIAGIANGMKLGNGLDPAVQMGPLISAKQQDRVTGYIELGRELGATVACGG--- 374 +G+ ++ G+ +GP+++ Q +++ G I G E GA + GG Sbjct: 292 AAEAAQIASGLMKAVETGDPAQEGRHIGPVVNKAQWEKIQGLIRKGMEEGAKLETGGPGR 351 Query: 375 -EGFGPGYFVKPTVIVDVDQRHRLVQEEIFGPVLVAMPFDDLDEVIGMANDNPYGLGASI 433 +G GYFVKPT+ V + +EEIFGPV+ +P+ D +E + +AND YGL A + Sbjct: 352 PDGIETGYFVKPTLFSGVRNDMTIAREEIFGPVITIIPYRDEEEAVRIANDTDYGLSAVL 411 Query: 434 WSNDLAAVHRMIPRIKSGSVWVNCHSALDPALPFGGYKMSGVGREVGAAAIEHYTELKSV 493 + + V R+ PR+++G V++N DP+LPFGGYK SG GRE G + + E+K++ Sbjct: 412 FGSP-EEVKRVAPRLRAGMVYIN-GGQPDPSLPFGGYKQSGNGREHGKFGLAEFMEVKAM 469 Query: 494 L 494 + Sbjct: 470 V 470 Lambda K H 0.320 0.137 0.413 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 567 Number of extensions: 25 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 474 Length adjustment: 34 Effective length of query: 463 Effective length of database: 440 Effective search space: 203720 Effective search space used: 203720 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory