Align aminobutyraldehyde dehydrogenase (EC 1.2.1.19) (characterized)
to candidate Ga0059261_0516 Ga0059261_0516 vanillin dehydrogenase (EC 1.2.1.67)
Query= BRENDA::G5DDC2 (506 letters) >FitnessBrowser__Korea:Ga0059261_0516 Length = 478 Score = 219 bits (558), Expect = 2e-61 Identities = 165/484 (34%), Positives = 240/484 (49%), Gaps = 24/484 (4%) Query: 21 PPAQGRRLPVVNPTTEAHIGEIPAGTAEDVDAAVAAARAALKRNRGRDWARAPGAVRAKY 80 PPA G+ +NP T E A T + + AV AA AA W+ R Sbjct: 6 PPAPGKTFARLNPVTGEVATEAQAFTVDQANEAVEAAAAAFPA-----WSTLGPNARRAA 60 Query: 81 LRAIAAKVIERKQELAKLEALDCGKPYDEAAWDMDDVAGCFEYFADQAEALDKRQNSPVS 140 L A + + ++ + + G A +++ +A AL + V Sbjct: 61 LNKAAEALAAKAEDFVEAMNGEIGATEGWARFNLMLAVSMVR----EAAALTTQIGGEV- 115 Query: 141 LPMETFKCHLR--REPIGVVGLITPWNYPLLMATWKVAPALAAGCAAVLKPSELASVTCL 198 +P + C REP+GV+ I PWN P+++ VA LA G VLK SE T Sbjct: 116 IPSDKPGCIAMAIREPVGVMLGIAPWNAPIILGVRAVAAPLACGNTVVLKASEQCPRTHS 175 Query: 199 ELADICKEVGLPPGVLNIVTGLGPDAGAPLSA---HPDVDKVAFTGSFETGKKIMAAAAP 255 +A+ E LP G ++IVT DA + A +P + ++ FTGS G+ I AA Sbjct: 176 LIAEAFDEA-LPKGAVSIVTNAPEDAPEIVGALIDNPHIRRINFTGSTAVGRIIAKRAAE 234 Query: 256 MVKPVTLELGGKSPIVVFDDVDIDKAVEWTLFGCFWTNGQICSATSRLLVHTKIAKEFNE 315 +KPV LELGGK+P++V +D D+D+AV+ FG F GQIC +T R++V +A F E Sbjct: 235 HLKPVLLELGGKAPMLVLEDADLDEAVKAAAFGAFMNQGQICMSTERIIVVDAVADAFVE 294 Query: 316 KMVAWAKNIKVSDPLEEGCRLGPVVSEGQYEKIKKFILNAKSEGATILTGGVRPAHLE-- 373 K A + V DP E LG VV + +K I +A + GA + GG LE Sbjct: 295 KFAAKVGTMPVGDPREGKTPLGAVVDQKTVAHVKALIGDALAAGAVQVNGG---GVLEGT 351 Query: 374 KGFFIEPTIITDITTSMEIWREEVFGPVLCVKEFSTEDEAIELANDTQYGLAGAVISGDR 433 G + +I +T M+++R+E FGPV+ V E AI LANDT+YGL+ +V + D Sbjct: 352 GGVLMPAHVIDHVTPDMKLFRDESFGPVVGVIRARDEAHAILLANDTEYGLSASVFTRDT 411 Query: 434 ERCQRLSEEIDAGIIWVN-CSQPCFCQAPWGGNKRSGFGRELGEGGIDNYLSVKQVTEYI 492 R R++ +I +GI VN + Q P+GG K SG+GR G+ GID + ++ +T I Sbjct: 412 ARGLRVARQIKSGICHVNGPTVHDEAQMPFGGVKASGYGRFGGKAGIDAFTELRWIT--I 469 Query: 493 SDEP 496 EP Sbjct: 470 ETEP 473 Lambda K H 0.318 0.135 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 569 Number of extensions: 27 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 478 Length adjustment: 34 Effective length of query: 472 Effective length of database: 444 Effective search space: 209568 Effective search space used: 209568 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory