Align lactaldehyde dehydrogenase (EC 1.2.1.22); 2,5-dioxovalerate dehydrogenase (EC 1.2.1.26) (characterized)
to candidate Ga0059261_3677 Ga0059261_3677 methylmalonic acid semialdehyde dehydrogenase
Query= BRENDA::Q97UA1 (478 letters) >FitnessBrowser__Korea:Ga0059261_3677 Length = 503 Score = 244 bits (624), Expect = 4e-69 Identities = 149/473 (31%), Positives = 244/473 (51%), Gaps = 13/473 (2%) Query: 14 GSGEEYLDINPADKDHVLAKIRLYTKDDVKEAINKAVAKFDEWSRTPAPKRGSILLKAGE 73 G+G D+ + V A++ L + D+ A+ AV W+ T +R ++ Sbjct: 19 GTGTRRSDVFDPNTGAVQAQVTLGAQADLDAAMANAVRAQISWAATNPQRRARVMFNFKA 78 Query: 74 LMEQEAQEFALLMTLEEGKTLKDSMFEVTRSYNLLKFYGALAFKISGKTLPSADPNTRIF 133 L+E+ +E A L++ E GK + D+ ++ R +++F + + G+ A P ++ Sbjct: 79 LIEKNMEELAHLLSSEHGKVIADAKGDIQRGLEVIEFVCGIPHVLKGEYTQGAGPGIDVY 138 Query: 134 TVKEPLGVVALITPWNFPLSIPVWKLAPALAAGNTAVIKPATKTPLMVAKLVEVLSKAGL 193 ++++PLGVVA ITP+NFP IP+W A+A GN ++KP+ + P + +L E++ +AGL Sbjct: 139 SMRQPLGVVAGITPFNFPAMIPMWMFGVAIACGNAFILKPSERDPSVPVRLAELMLEAGL 198 Query: 194 PEGVVNLVVGKGSEVGDTIVSDDNIAAVSFTGSTEVGKRIYK--LVGNKNRMTRIQLELG 251 PEGV+ +V G E+ D I+ I AVSF GS+++ +Y+ + K R+Q G Sbjct: 199 PEGVLQVVQG-DKEMVDAILDHPEIKAVSFVGSSDIAHYVYRRGVAAGK----RVQAMGG 253 Query: 252 GKNALYVDKSADLTLAAELAVRGGFGLTGQSCTATSRLI-INKDVYTQFKQRLLERVKKW 310 KN V ADL FG G+ C A ++ + + +LL ++ Sbjct: 254 AKNHGIVMPDADLDQVVNDLAGAAFGSAGERCMALPVVVPVGDKTADALRAKLLPAIEAL 313 Query: 311 RVGPGTE-DVDMGPVVDEGQFKKDLEYIEYGKNVGAKLIYGGN--IIPG--KGYFLEPTI 365 RVG T+ GPVV K YI+ G + GA+L+ G + G +G+F+ PT+ Sbjct: 314 RVGVSTDAGAHYGPVVTAAHKAKIESYIQMGVDEGAELVVDGRGFTLQGHEQGFFVGPTL 373 Query: 366 FEGVTSDMRLFKEEIFGPVLSVTEAKDLDEAIRLVNAVDYGHTAGIVASDIKAINEFVSR 425 F+ VT M+ ++EEIFGPVL + A D + A+RL + YG+ I + A EF +R Sbjct: 374 FDRVTPQMQSYQEEIFGPVLQIVRAPDFETALRLPSEHQYGNGVAIFTRNGHAAREFAAR 433 Query: 426 VEAGVIKVNKPTVGLELQAPFGGFKNSGATTWKEMGEDALEFYLKEKTVYEGW 478 V G++ +N P FGG+K S + G + ++F+ K KTV + W Sbjct: 434 VNVGMVGINVPIPVPVAYHTFGGWKRSAFGDTNQHGMEGIKFFTKVKTVTQRW 486 Lambda K H 0.316 0.135 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 564 Number of extensions: 35 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 478 Length of database: 503 Length adjustment: 34 Effective length of query: 444 Effective length of database: 469 Effective search space: 208236 Effective search space used: 208236 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory