Align Branched chain amino acid (Leucine/isoleucine/valine) uptake transporter of 469 aas and 12 TMSs, BcaP or CitA (characterized)
to candidate Ga0059261_1577 Ga0059261_1577 amino acid/polyamine/organocation transporter, APC superfamily (TC 2.A.3)
Query= TCDB::S6EX81 (469 letters) >lcl|FitnessBrowser__Korea:Ga0059261_1577 Ga0059261_1577 amino acid/polyamine/organocation transporter, APC superfamily (TC 2.A.3) Length = 470 Score = 249 bits (636), Expect = 1e-70 Identities = 149/438 (34%), Positives = 247/438 (56%), Gaps = 11/438 (2%) Query: 29 LALGVGTIISTSIFTLPGQVAAQFAGPGVVFSYLLAALVAGFVALAYAEMSTVMPFAGSA 88 +ALGVG I+ T I TL G V A AGP V+ S+++A + ALAYAEM+T+MP +GSA Sbjct: 33 VALGVGAIVGTGILTLIG-VGAGKAGPAVIMSFVIAGAICACAALAYAEMATMMPASGSA 91 Query: 89 YSWISVLFGEGFGWIAGWALLAEYFIAVAFVGSGFSANLQQLL-APLGFHLPKVLANPFG 147 Y++ + GE W+ GW+L+ EY + V+ V G+S LL A G L +++A P Sbjct: 92 YAYSYAVLGEIIAWVVGWSLILEYSLVVSTVAVGWSGYAAPLLHAWTGMPL-ELMAGPHA 150 Query: 148 TDGGVVDIISLLVILLSAIIVFRGASDAGRISQILVVLKVAAVIAFIIVGITVIKPANYH 207 G+V++ ++ +I + A ++ G ++ ++ LVV+K+ A+ F+ V + AN Sbjct: 151 N--GIVNLPAIFIIAVVAGLLCLGTKESATLNAALVVVKIIALAVFVAVALPYFNGANLE 208 Query: 208 PFIPPHNPKT--GFGGFSGIWSGVSMIFLAYIGFDSIAANSAEAKNPQKTMPRGIIGSLL 265 PF P KT G G+ + ++IF A+ GFD+I+ + E KNP + + GI+GS++ Sbjct: 209 PFAPFGFAKTISPDGVERGVMAAAAIIFFAFYGFDAISTAAEETKNPGRDLAIGIVGSMI 268 Query: 266 IAVVLFAAVTLVLVGMHPYSAYAGNAAPVGWALQQSGYSVLSEVVTAIALAGMFIALLGM 325 V ++ V + VG P++ +A + P+ L+ G + + A+ + LLG Sbjct: 269 ACVAIYMLVAVAAVGATPFTHFANSPEPLALILRDLGRPGFATFLAVSAIIALPTVLLGF 328 Query: 326 VLAGSRLLYAFGRDGLLPKGLGKMNARNLPAN-GVWTLAIVAIVIGAFFPFAFLAQLISA 384 + SR+ + RDG+LP GL K++ R P ++T AIVA++ G P +A L +A Sbjct: 329 LFGQSRIFFTMARDGMLPIGLAKVSKRGSPVRITLFTAAIVAVIAG-LLPIDEIAALANA 387 Query: 385 GTLIAFMFVTLGIYSLRRRQGKDLPEATYKMPFYPVLPALGFIGSLFVFWGLDVQAKLYS 444 GTL AF V + + LR R D+P ++ P + ++ A+ +G +++F+ L V+ +L+ Sbjct: 388 GTLAAFTAVAVCMMVLRVR-APDMPR-MFRTPLWWLVGAIAVLGCIYLFFSLPVKTQLWF 445 Query: 445 GIWFLIGILIYFAYGNRR 462 W +G++IYFAY R Sbjct: 446 LAWNALGVVIYFAYARPR 463 Lambda K H 0.328 0.143 0.433 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 681 Number of extensions: 41 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 469 Length of database: 470 Length adjustment: 33 Effective length of query: 436 Effective length of database: 437 Effective search space: 190532 Effective search space used: 190532 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory