Align 3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring) (EC 1.2.4.4) (characterized)
to candidate Ga0059261_2273 Ga0059261_2273 Pyruvate/2-oxoglutarate dehydrogenase complex, dehydrogenase (E1) component, eukaryotic type, alpha subunit
Query= reanno::Smeli:SMc03201 (410 letters) >lcl|FitnessBrowser__Korea:Ga0059261_2273 Ga0059261_2273 Pyruvate/2-oxoglutarate dehydrogenase complex, dehydrogenase (E1) component, eukaryotic type, alpha subunit Length = 429 Score = 492 bits (1267), Expect = e-144 Identities = 247/400 (61%), Positives = 290/400 (72%) Query: 7 LSLHVPEPAVRPGDLPDFSNVKIPKAGSVPRPDVDVDPEEIRDLAYSIIRVLNREGEAVG 66 LSLHVPEP RPGD DF+ V +P AG+ RPD DP +LAY+++RVL+ G+AVG Sbjct: 13 LSLHVPEPKFRPGDAVDFTEVAVPPAGAQSRPDTAADPSSFHELAYTLVRVLDDNGQAVG 72 Query: 67 PWAGFLSDEELLTGLRHMMLLRAFDARMLMAQRQGKTSFYMQHLGEEAVSCAFRKALRKG 126 PW L + L L M L+RAFD RM AQRQGKTSFYM+ GEEAV+ A AL Sbjct: 73 PWNPKLDPDTLRKMLHDMALVRAFDERMFRAQRQGKTSFYMKCTGEEAVAIAAAHALASD 132 Query: 127 DMNFPTYRQAGLLIADDYPMVEMMNQIFSNELDPCHGRQLPVMYTSKEHGFFTISGNLAT 186 DM FP+YRQ GLLIA Y +V+MMNQI+SN+ D G+QLP+MY+SKE GFF+ISGNL T Sbjct: 133 DMCFPSYRQQGLLIARGYSLVQMMNQIYSNKGDDLAGKQLPIMYSSKEKGFFSISGNLTT 192 Query: 187 QYVQAVGWAMASAIKNDTRIAAGWIGDGSTAESDFHSALVFASTYKAPVILNIVNNQWAI 246 QY QAVGWAMASA K DTRIAA W G+GSTAE DFHSAL FA+ YKAPVILN+VNNQWAI Sbjct: 193 QYPQAVGWAMASAAKGDTRIAATWCGEGSTAEGDFHSALTFATVYKAPVILNVVNNQWAI 252 Query: 247 STFQGIARGGSGTFAARGLGFGIPALRVDGNDYLAVYAVARWAAERARLNLGPTLIEYVT 306 S+F G A + TFAAR LG+GI LRVDGND LAVYA WAAERAR N GPTLIE+ T Sbjct: 253 SSFSGFAGAEATTFAARALGYGIAGLRVDGNDALAVYAATLWAAERARTNQGPTLIEHFT 312 Query: 307 YRVGAHSTSDDPSAYRPKTESEAWPLGDPVLRLKKHLILRGAWSEERHAQAEAEIMDEVI 366 YR HSTSDDP+ YR E AWPLGDP+ RLK HLI G W EERH + + E+ ++V Sbjct: 313 YRTEGHSTSDDPTQYRSAGEPTAWPLGDPIARLKAHLIAIGEWDEERHVEMDRELAEQVK 372 Query: 367 QAQKEAERHGTLHAGGRPSVRDIFEGVYAEMPPHIRRQRQ 406 AQKEAE++G L G + +F+GV+ EMP H+R QRQ Sbjct: 373 VAQKEAEKNGILGHGLHQPLDSLFDGVFEEMPWHLREQRQ 412 Lambda K H 0.320 0.135 0.410 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 588 Number of extensions: 16 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 410 Length of database: 429 Length adjustment: 32 Effective length of query: 378 Effective length of database: 397 Effective search space: 150066 Effective search space used: 150066 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory