Align Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex; EC 2.3.1.168; Branched-chain alpha-keto acid dehydrogenase complex component E2; BCKAD-E2; BCKADE2; Dihydrolipoamide acetyltransferase component of branched-chain alpha-keto acid dehydrogenase complex; Dihydrolipoamide branched chain transacylase; Dihydrolipoyllysine-residue (2-methylpropanoyl)transferase (uncharacterized)
to candidate Ga0059261_3712 Ga0059261_3712 pyruvate dehydrogenase complex dihydrolipoamide acetyltransferase, long form
Query= curated2:P37942 (424 letters) >FitnessBrowser__Korea:Ga0059261_3712 Length = 428 Score = 204 bits (518), Expect = 5e-57 Identities = 138/428 (32%), Positives = 220/428 (51%), Gaps = 31/428 (7%) Query: 8 MPQLGESVTEGTISKWLVAPGDKVNKYDPIAEVMTDKVNAEVPSSFTGTITELVGEEGQT 67 MP L ++ EGT++KWLV GD V D +AE+ TDK E + G I +++ EG Sbjct: 7 MPALSPTMEEGTLAKWLVKEGDTVKAGDLMAEIETDKATMEFEAVDEGVIAKILIAEGTD 66 Query: 68 -LQVGEMICKIETEG----ANPAEQKQEQPAASEA---------AENPVAKSAGAADQPN 113 ++VG +I + EG A A K E P A+EA A P +A AA + Sbjct: 67 GVKVGTVIAVLAGEGEDVSAAAAAPKAEAPKAAEAPKEEAKAAPAAAPAPVAAPAAASGD 126 Query: 114 KKRYSPAVLRLAGEHGIDLDQVTGTGAGGRITRKDIQRLIETGGVQEQNPEELKTAAPAP 173 + + SP R+A E G++L V+G+G GRI + D++ G P AAPA Sbjct: 127 RVKASPLARRIAAEKGVELGSVSGSGPNGRIVKADVE-----GAKPGAAPAAAAPAAPAA 181 Query: 174 KSASKPEPKEETSYPASAAGDKEIP-----VTGVRKAIASNMKRSKTEIPHAWTMMEVDV 228 A+ + PAS D+ IP ++ +RK IA + +K IPH + ++V + Sbjct: 182 APAAAAP-----AAPASVWYDESIPHEEEKLSNIRKTIARRLTEAKQTIPHIYLTVDVQL 236 Query: 229 TNMVAYRNSIKDSFKKTEGFNLTFFAFFVKAVAQALKEFPQMNSMWAGDKIIQKKDINIS 288 ++ R + S + G L+ +KA+A AL + P+ N +AGDK+++ +IS Sbjct: 237 DALLKLRGQLNKSLE-ARGVKLSVNDMLIKALAVALAQVPKCNVTYAGDKLVKYSRSDIS 295 Query: 289 IAVATEDSLFVPVIKNADEKTIKGIAKDITGLAKKVRDGKLTADDMQGGTFTVNNTGSFG 348 +AV+T L P+I++A + I+ + L ++ ++GKL + QGGT +++N G FG Sbjct: 296 VAVSTPTGLITPIIRDAANIGLASISTQMKELGQRAKEGKLQPHEYQGGTASISNMGMFG 355 Query: 349 SVQSMGIINYPQAAILQVESIVKRPVVMDNGMIAVRDMVNLCLSLDHRVLDGLVCGRFLG 408 Q +IN PQA IL V + KRP ++D+ + V +++ S DHR +DG + Sbjct: 356 IKQFDAVINPPQAMILAVGAGEKRPYIVDDA-LGVATVMSATGSFDHRAVDGADGAELMK 414 Query: 409 RVKQILES 416 K ++ES Sbjct: 415 VFKALVES 422 Lambda K H 0.312 0.129 0.359 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 432 Number of extensions: 32 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 424 Length of database: 428 Length adjustment: 32 Effective length of query: 392 Effective length of database: 396 Effective search space: 155232 Effective search space used: 155232 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.9 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory