Align 2-hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85) (characterized)
to candidate BWI76_RS03865 BWI76_RS03865 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase
Query= metacyc::MONOMER-15108 (486 letters) >FitnessBrowser__Koxy:BWI76_RS03865 Length = 488 Score = 429 bits (1102), Expect = e-124 Identities = 219/479 (45%), Positives = 315/479 (65%), Gaps = 11/479 (2%) Query: 13 HFIDGKFVPSLDGKTFDNINPATEEKLGTVAEGGAAEIDLAVQAAKKALNGPWKKMTANE 72 H+I+GK V D F NPAT E L VA GGA E++ AV AAK+A W + E Sbjct: 6 HWINGKNVAGSD--YFHTTNPATGEVLAEVASGGADEVNQAVAAAKEAFP-KWANLPMKE 62 Query: 73 RIAVLRKVGDLILERKEELSVLESLDTGKPTWLSGSIDIPRAAYNFHFFSDYIRTITNEA 132 R ++R++GDLI + E++ +E+ DTG P + ++ IPRA++NF FF++ + + + Sbjct: 63 RARLMRRLGDLIDQNVPEIAAMETADTGLPIHQTKNVLIPRASHNFEFFAEVCQQMNGKT 122 Query: 133 TQMDDVALNYAIRRPVGVIGLINPWNLPLLLMTWKLAPALAAGNTVVMKPAELTPMTATV 192 +DD LNY + +PVGV L++PWN+P + TWK+AP LA GNT V+K +EL+P+TA Sbjct: 123 YPVDDKMLNYTLVQPVGVCALVSPWNVPFMTATWKVAPCLALGNTAVLKMSELSPLTADR 182 Query: 193 LAEICRDAGVPDGVVNLVHGFGPNSAGAALTEHPDVNAISFTGETTTGKIIMASAAKTLK 252 L E+ +AG+P GV+N+V G+G +AG AL H DV A+SFTG T TG+ IM +A LK Sbjct: 183 LGELALEAGIPAGVLNVVQGYGA-TAGDALVRHHDVRAVSFTGGTATGRNIMKNAG--LK 239 Query: 253 RLSYELGGKNPNVIFADSNLDEVIETTMKSSFINQGEVCLCGSRIYVERPAYEAFLEKFV 312 + S ELGGK+P +IF D++++ ++ + + F GE C GSRI++++ Y F+++F Sbjct: 240 KYSMELGGKSPVLIFEDADIERALDAALFTIFSINGERCTAGSRIFIQQSIYPEFVKRFA 299 Query: 313 AKTKELVVGDPFDAKTKVGALISDEHYERVTGYIKLAVEEGGTILTGG-----KRPEGLE 367 + L VGDP D T+VGALIS +H+E+V+GYI+L +EEG T+L GG P L Sbjct: 300 ERANRLRVGDPTDPNTQVGALISQQHWEKVSGYIRLGIEEGATLLAGGADKPTDLPAHLR 359 Query: 368 KGYFLEPTIITGLTRDCRVVKEEIFGPVVTVIPFDTEEEVLEQINDTHYGLSASVWTNDL 427 G FL PT++ + RV +EEIFGPV ++PF E E L ND YGL++ +WT D+ Sbjct: 360 NGNFLRPTVLADVDNRMRVAQEEIFGPVACLLPFKDEAEGLRLANDVEYGLASYIWTQDV 419 Query: 428 RRAHRVAGQIEAGIVWVNTWFLRDLRTPFGGMKQSGIGREGGLHSFEFYSELTNICIKL 486 + R+A IEAG+V+VNT +RDLR PFGG+K SG GREGG +SFE ++E+ N+CI + Sbjct: 420 SKVLRLARGIEAGMVFVNTQNVRDLRQPFGGVKASGTGREGGEYSFEVFAEMKNVCISM 478 Lambda K H 0.318 0.136 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 612 Number of extensions: 26 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 488 Length adjustment: 34 Effective length of query: 452 Effective length of database: 454 Effective search space: 205208 Effective search space used: 205208 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory