Align 2-hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85) (characterized)
to candidate BWI76_RS10695 BWI76_RS10695 aldehyde dehydrogenase PuuC
Query= metacyc::MONOMER-15108 (486 letters) >FitnessBrowser__Koxy:BWI76_RS10695 Length = 495 Score = 360 bits (925), Expect = e-104 Identities = 202/488 (41%), Positives = 287/488 (58%), Gaps = 8/488 (1%) Query: 2 QQTKVKPIDCLHFIDGKFVPSLDGKTFDNINPATEEKLGTVAEGGAAEIDLAVQAAKKAL 61 Q+ + I+ FI+G++ + D F I+PA ++ L VA G A++D AVQAA+ Sbjct: 11 QKARELTIETRLFINGEYSAAADNSVFATIDPAAQQTLAEVARGKKADVDRAVQAARGVF 70 Query: 62 N-GPWKKMTANERIAVLRKVGDLILERKEELSVLESLDTGKPTWLSGSIDIPRAAYNFHF 120 + G W + + +R AVL K DL+ +EEL++LE+LDTGKP S DIP AA + Sbjct: 71 DRGDWSQASPAQRKAVLTKFADLMDAHREELALLETLDTGKPIRHSLRDDIPGAARAIRW 130 Query: 121 FSDYIRTITNEATQMDDVALNYAIRRPVGVIGLINPWNLPLLLMTWKLAPALAAGNTVVM 180 +++ I + E L +R P+GVI + PWN PLLL WKL PALA+GN+VV+ Sbjct: 131 YAEAIDKVYGEVAPTGGNELAMIVREPIGVIAAVVPWNFPLLLACWKLGPALASGNSVVL 190 Query: 181 KPAELTPMTATVLAEICRDAGVPDGVVNLVHGFGPNSAGAALTEHPDVNAISFTGETTTG 240 KP+E +P+TA LA + + AG+PDGV N+V GFG + AG AL HPDV I+FTG T T Sbjct: 191 KPSEKSPLTALRLAGLAKQAGLPDGVFNVVSGFG-HEAGQALALHPDVEVITFTGSTRTA 249 Query: 241 KIIMASAA-KTLKRLSYELGGKNPNVIFAD-SNLDEVIETTMKSSFINQGEVCLCGSRIY 298 K ++ A +KR+ E GGK+ N++FAD +L + + T F NQG+VC+ G+R+ Sbjct: 250 KQLLKDAGDSNMKRVWLEAGGKSANIVFADCPDLQKAVNATAGGIFYNQGQVCIAGTRLL 309 Query: 299 VERPAYEAFLEKFVAKTKELVVGDPFDAKTKVGALISDEHYERVTGYIKLAVEEGGTILT 358 +E + FL+ + K G+P D T +G LI + H + V +I+ +L Sbjct: 310 LEESIADRFLDLLKEQAKGWQPGNPLDPNTTMGMLIDNTHADSVHSFIRAGEAHSTLLLD 369 Query: 359 GGKRPEGLEKGYFLEPTIITGLTRDCRVVKEEIFGPVVTVIPFDTEEEVLEQINDTHYGL 418 G K P G PTI + + +EEIFGPV+ V F EE+ L ND+ YGL Sbjct: 370 GRKNPWPAAVG----PTIFVDVDPASPLSQEEIFGPVLVVTRFKNEEQALALANDSRYGL 425 Query: 419 SASVWTNDLRRAHRVAGQIEAGIVWVNTWFLRDLRTPFGGMKQSGIGREGGLHSFEFYSE 478 A+VWT DL RAHRV+ +++AG V+VN + D+ PFGG KQSG GR+ LH+ E ++E Sbjct: 426 GAAVWTRDLSRAHRVSRRLKAGSVFVNNYNDGDMTVPFGGYKQSGNGRDKSLHALEKFTE 485 Query: 479 LTNICIKL 486 L I I L Sbjct: 486 LKTIWIAL 493 Lambda K H 0.318 0.136 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 582 Number of extensions: 24 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 495 Length adjustment: 34 Effective length of query: 452 Effective length of database: 461 Effective search space: 208372 Effective search space used: 208372 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory