Align Citrate lyase alpha chain; Citrase alpha chain; Citrate (pro-3S)-lyase alpha chain; Citrate CoA-transferase subunit; EC 4.1.3.6; EC 2.8.3.10 (characterized)
to candidate BWI76_RS04450 BWI76_RS04450 citrate lyase subunit alpha
Query= SwissProt::P75726 (510 letters) >lcl|FitnessBrowser__Koxy:BWI76_RS04450 BWI76_RS04450 citrate lyase subunit alpha Length = 508 Score = 697 bits (1800), Expect = 0.0 Identities = 355/479 (74%), Positives = 413/479 (86%), Gaps = 1/479 (0%) Query: 31 SPKQTYQAEKARDRKLCANLEEAIRRSGLQDGMTVSFHHAFRGGDLTVNMVMDVIAKMGF 90 SP ++EK R RK+CA+LEEAIRRSGLQ+GMT+SFHHAFRGGD VNMV+ +A+MGF Sbjct: 28 SPWLASESEK-RQRKICASLEEAIRRSGLQNGMTISFHHAFRGGDKVVNMVVAKLAEMGF 86 Query: 91 KNLTLASSSLSDCHAPLVEHIRQGVVTRIYTSGLRGPLAEEISRGLLAEPVQIHSHGGRV 150 ++LTLASSSL D H PL+EHI+ GV+ +IYTSGLRG L EEIS GL+ PVQIHSHGGR Sbjct: 87 RDLTLASSSLIDAHWPLIEHIKNGVIRQIYTSGLRGKLGEEISAGLMENPVQIHSHGGRA 146 Query: 151 HLVQSGELNIDVAFLGVPSCDEFGNANGYTGKACCGSLGYAIVDADNAKQVVMLTEELLP 210 +LVQSGELNIDVAFLGVP CDE+GNANG++GK+ CGSLGYA VDAD AK VV+LTEE + Sbjct: 147 YLVQSGELNIDVAFLGVPCCDEYGNANGFSGKSRCGSLGYAKVDADAAKCVVLLTEEWVD 206 Query: 211 YPHNPASIEQDQVDLIVKVDRVGDAAKIGAGATRMTTNPRELLIARSAADVIVNSGYFKE 270 YP+ PASI QDQVDLIV+VD VGD AKI AGA R+T+NPRELLIAR AA VI +SGYFK+ Sbjct: 207 YPNYPASIAQDQVDLIVQVDEVGDPAKITAGAIRLTSNPRELLIARQAAKVIEHSGYFKD 266 Query: 271 GFSMQTGTGGASLAVTRFLEDKMRSRDIRADFALGGITATMVDLHEKGLIRKLLDVQSFD 330 GFS+QTGTGGASLAVTRFLEDKMR +I A F LGGIT TMVDLHEKGLI+ LLD QSFD Sbjct: 267 GFSLQTGTGGASLAVTRFLEDKMRRHNITASFGLGGITGTMVDLHEKGLIKALLDTQSFD 326 Query: 331 SHAAQSLARNPNHIEISANQYANWGSKGASVDRLDVVVLSALEIDTQFNVNVLTGSDGVL 390 AA+SLA NPNHIEISANQYAN GSKG + +RL+VV+LSALEIDT FNVNV+TGS+GVL Sbjct: 327 GDAARSLANNPNHIEISANQYANPGSKGIACERLNVVMLSALEIDTGFNVNVMTGSNGVL 386 Query: 391 RGASGGHCDTAIASALSIIVAPLVRGRIPTLVDNVLTCITPGSSVDILVTDHGIAVNPAR 450 RGASGGHCDTA + L+II APLVRGRIP +V+ VLT +TPG+SVD+LVTDHGIAVNPAR Sbjct: 387 RGASGGHCDTAAGADLTIITAPLVRGRIPCVVEKVLTRVTPGASVDVLVTDHGIAVNPAR 446 Query: 451 PELAERLQEAGIKVVSIEWLRERARLLTGEPQPIEFTDRVVAVVRYRDGSVIDVVHQVK 509 +L +RL++A I +++IE L++RA LLTG+P+PI FTDRVVAVVRYRDGSVIDV+HQVK Sbjct: 447 QDLIDRLRQADIPLMTIEALQQRAELLTGKPEPIAFTDRVVAVVRYRDGSVIDVIHQVK 505 Lambda K H 0.319 0.134 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 826 Number of extensions: 25 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 510 Length of database: 508 Length adjustment: 34 Effective length of query: 476 Effective length of database: 474 Effective search space: 225624 Effective search space used: 225624 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory