Align L-glutamate gamma-semialdehyde dehydrogenase (EC 1.2.1.88) (characterized)
to candidate BWI76_RS12820 BWI76_RS12820 NAD-dependent phenylacetaldehyde dehydrogenase
Query= BRENDA::Q9RW56 (523 letters) >FitnessBrowser__Koxy:BWI76_RS12820 Length = 499 Score = 238 bits (608), Expect = 3e-67 Identities = 169/516 (32%), Positives = 262/516 (50%), Gaps = 38/516 (7%) Query: 25 QAALAKVRKELLGKHYPLIIDG--QEVDTEGKIQSINPCDTSEVVGTTAKATIGDAENAL 82 Q AL ++ L + + L +DG Q ++E ++ NP T + + +TA A D + A+ Sbjct: 5 QVALLASVQQFLDRQHGLYLDGTQQAAESEQRLTVWNPA-TGQAIASTADANAADVDRAV 63 Query: 83 QGAWKAF--ESWKKWDMDARARILLKAAAILKRRRLEACALMSIEVGK--NYAEADVEVA 138 AW+AF SW R RILL+ A ++++ E L ++E GK N + A EV Sbjct: 64 MSAWRAFVSRSWAGRTPADRERILLRFADLVEQHGEELAQLETLEQGKSINISRA-FEVG 122 Query: 139 EAIDFLEYYARSAMKYAG----------FGSSETTWFEGEENGLMSIPLGVGVSISPWNF 188 ++++ Y A K +G G W + E P+GV I PWNF Sbjct: 123 CTLNWMRYTAGLTTKISGRTLDVSIPFPAGGRYQAWTKKE-------PVGVVAGIVPWNF 175 Query: 189 PCAIFVGMAAAPIVAGNCVVVKPAEDAGLIAGFMVDILREAGLPAGVLQFLPGVGKEVGE 248 P I + + AG +V+KP+E L + ++ EAG+P GV + G G G Sbjct: 176 PLMIGMWKVMPALAAGCSIVIKPSETTPLTLLRVAELATEAGVPDGVFNVVTGSGAGCGA 235 Query: 249 YLTTHAKTRFITFTGSRAVGLHINEVAAKVQPGQKWIKRVIMELGGKDGLIVDETADIEN 308 LT+H ++FTGS A G I VAA + RV +ELGGK+ IV + AD + Sbjct: 236 ALTSHPLVAKVSFTGSTATGKQIARVAA------DRLTRVTLELGGKNPAIVLKDADPQW 289 Query: 309 AITAATQGAFGFNGQKCSAMSRLIVVDSVYDEVVNGFVERAKALKMGTGE-ENANVTAVV 367 I G+F GQ C+A SR+ + ++D +V+GF + K+L++G G E++ + VV Sbjct: 290 VIEGLMTGSFLNQGQVCAASSRIYIEAPLFDTLVSGFEQAVKSLQVGPGMLESSQINPVV 349 Query: 368 NQMSFNKIKGYLELAPSEGKVLLGGEATGEANGKQGYYIQPTIVGDVDRNSRLAQEEIFG 427 +Q K+ YL+ A + L+ G A +A QGYYI PT+V + D RL +EE+FG Sbjct: 350 SQAHCAKVAAYLDEARQQKAELISGHAGPDA---QGYYIAPTLVINPDAGLRLCREEVFG 406 Query: 428 PVVAVLRAKDWQDALDIANSTEYGLTGGVCSNSRERLEQARAEFEVGNLYFNRKITGAIV 487 PVV ++R D ++AL +AN +++GLT V + + + G ++ N I Sbjct: 407 PVVNLVRVADGEEALLLANDSDFGLTASVWTRDLTQALSYTDRLQAGTVWVNSHT--LID 464 Query: 488 GVQPFGGYNMSGTDSKAGGPDYLSNFMQLKTVTERW 523 PFGG SGT + GPD+L ++ + K+V R+ Sbjct: 465 ANLPFGGMKQSGT-GRDFGPDWLDDWCETKSVCVRY 499 Lambda K H 0.317 0.134 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 595 Number of extensions: 21 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 499 Length adjustment: 35 Effective length of query: 488 Effective length of database: 464 Effective search space: 226432 Effective search space used: 226432 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory