Align Arabinose import ATP-binding protein AraG; EC 7.5.2.12 (characterized, see rationale)
to candidate BWI76_RS18245 BWI76_RS18245 L-arabinose transporter ATP-binding protein
Query= uniprot:A0A165ZSX8 (514 letters) >lcl|FitnessBrowser__Koxy:BWI76_RS18245 BWI76_RS18245 L-arabinose transporter ATP-binding protein Length = 504 Score = 576 bits (1485), Expect = e-169 Identities = 291/491 (59%), Positives = 373/491 (75%) Query: 16 LRFNGIGKSFPGVQALANISFVAHPGQVHALMGENGAGKSTLLKILGGAYIPSSGDLQIG 75 L F+GI +FPGV+AL++ISF + GQVHALMGENGAGKSTLLKIL G YIP++G LQI Sbjct: 8 LSFHGITMTFPGVKALSDISFGCYAGQVHALMGENGAGKSTLLKILSGNYIPTAGSLQIR 67 Query: 76 EQTMAFKGTADSIASGVAVIHQELHLVPEMTVAENLFLGHLPARFGLVNRGVLRQQALTL 135 Q M F T +++ +GVA+I+QELHL+PEMTVAEN++LG LP + G+VNR +L +A Sbjct: 68 GQQMTFNHTTEALNAGVAIIYQELHLIPEMTVAENIYLGQLPHKGGIVNRSLLNYEAGLQ 127 Query: 136 LKGLADEIDPQEKVGRLSLGQRQLVEIAKALSRGAHVIAFDEPTSSLSAREIDRLMAIIG 195 LK L +IDP+ + LS+GQ Q+VEIAKAL+R A +IAFDEPTSSLSAREI+ L +I Sbjct: 128 LKHLGLDIDPETPLKYLSIGQWQMVEIAKALARNAKIIAFDEPTSSLSAREIENLFRVIR 187 Query: 196 RLRDEGKVVLYVSHRMEEVFRICNAVTVFKDGRYVRTFENMSELTHDQLVTCMVGRDIQD 255 LR EG+V++YVSHRMEE+F + +A+TVFKDGRYVRTF+NM E+ HD LV MVGR++ + Sbjct: 188 ELRQEGRVIIYVSHRMEEIFALSDAITVFKDGRYVRTFDNMQEVNHDALVQAMVGRELGN 247 Query: 256 IYDYRPRERGDVALQVKGLLGPGLHEPVSFQVHKGEILGLFGLVGAGRTELLRLLSGLER 315 IY ++PRE G L+++ + PG+ +PVS V GEI+GLFGLVGAGR+EL++ L G R Sbjct: 248 IYGWQPREYGKERLRLEQVKAPGVRQPVSLSVRSGEIVGLFGLVGAGRSELMKGLFGGSR 307 Query: 316 QREGSLVLHDKELKLRSPRDAIAAGVLLCPEDRKKEGIIPLGSVGENINISARPSHSTLG 375 G + + + + +R P AI AG++LCPEDRK EGIIP+ SV +NINISAR H G Sbjct: 308 ITGGQVYIDGEAIDIRKPAQAIQAGMMLCPEDRKAEGIIPVHSVRDNINISARRKHILAG 367 Query: 376 CLLRGDWERGNADKQIKSLKVKTPTAGQKIMYLSGGNQQKAILGRWLSMPMKVLLLDEPT 435 C++ WE NAD+ IKSL +KTP A Q IM LSGGNQQKAILGRWLS MKV+LLDEPT Sbjct: 368 CVINNAWEAQNADQHIKSLNIKTPGAEQLIMNLSGGNQQKAILGRWLSEEMKVILLDEPT 427 Query: 436 RGIDIGAKAEIYQIIHNLAADGIAVIVVSSDLMEVMGISDRILVLCEGAMRGELSRDQAN 495 RGID+GAK EIY +I+ LAA G+AV+ SSDL EV+G++DRI+V+ EG + GEL + AN Sbjct: 428 RGIDVGAKHEIYNVIYALAASGVAVVFASSDLPEVLGVADRIVVMREGEIAGELLHEHAN 487 Query: 496 ESNLLQLALPR 506 E L LA+P+ Sbjct: 488 EQQALSLAMPK 498 Lambda K H 0.320 0.138 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 761 Number of extensions: 28 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 514 Length of database: 504 Length adjustment: 34 Effective length of query: 480 Effective length of database: 470 Effective search space: 225600 Effective search space used: 225600 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory