Align anaerobic glycerol-3-phosphate dehydrogenase subunit A (EC 1.1.5.3) (characterized)
to candidate BWI76_RS19965 BWI76_RS19965 sn-glycerol-3-phosphate dehydrogenase subunit A
Query= ecocyc::ANGLYC3PDEHYDROGSUBUNITA-MONOMER (542 letters) >FitnessBrowser__Koxy:BWI76_RS19965 Length = 540 Score = 889 bits (2298), Expect = 0.0 Identities = 438/536 (81%), Positives = 482/536 (89%) Query: 5 DSQSSDVIIIGGGATGAGIARDCALRGLRVILVERHDIATGATGRNHGLLHSGARYAVTD 64 DS+ DVIIIGGGATGAGIARDCALRGL+ LVER+DIATGATGRNHGLLHSGARYAVTD Sbjct: 3 DSREYDVIIIGGGATGAGIARDCALRGLKAALVERYDIATGATGRNHGLLHSGARYAVTD 62 Query: 65 AESARECISENQILKRIARHCVEPTNGLFITLPEDDLSFQATFIRACEEAGISAEAIDPQ 124 +ESARECISEN+IL+RIARHC+EPT+GLFITLPEDD ++Q TFI AC++AGI A+ + P Sbjct: 63 SESARECISENRILRRIARHCIEPTSGLFITLPEDDPAYQHTFITACQQAGIEAQPLTPA 122 Query: 125 QARIIEPAVNPALIGAVKVPDGTVDPFRLTAANMLDAKEHGAVILTAHEVTGLIREGATV 184 + +EPAVNPAL+GAV+VPDGTVDPFRLTAANMLDA+EHGA ILT EVTGL+REG V Sbjct: 123 ETLRLEPAVNPALLGAVQVPDGTVDPFRLTAANMLDAREHGATILTGCEVTGLLREGDRV 182 Query: 185 CGVRVRNHLTGETQALHAPVVVNAAGIWGQHIAEYADLRIRMFPAKGSLLIMDHRINQHV 244 GV + + E +L A VVVNAAGIWGQ IAEYADLRI MFPAKGSLLI+DHRIN+ V Sbjct: 183 QGVALYDRQRREPLSLRAQVVVNAAGIWGQRIAEYADLRIAMFPAKGSLLILDHRINRQV 242 Query: 245 INRCRKPSDADILVPGDTISLIGTTSLRIDYNEIDDNRVTAEEVDILLREGEKLAPVMAK 304 INRCRKP+DADILVPGDTISLIGTTS+ I Y+EIDDNRVTA EVD LLREGEKLAP+M + Sbjct: 243 INRCRKPADADILVPGDTISLIGTTSMHIPYDEIDDNRVTAGEVDTLLREGEKLAPIMGR 302 Query: 305 TRILRAYSGVRPLVASDDDPSGRNVSRGIVLLDHAERDGLDGFITITGGKLMTYRLMAEW 364 TRILRAYSGVRPLVASDDDPSGR+VSRGIVLLDHA+RDG++GFITITGGKLMTYRLMAEW Sbjct: 303 TRILRAYSGVRPLVASDDDPSGRSVSRGIVLLDHAQRDGMEGFITITGGKLMTYRLMAEW 362 Query: 365 ATDAVCRKLGNTRPCTTADLALPGSQEPAEVTLRKVISLPAPLRGSAVYRHGDRTPAWLS 424 ATDAVCRKLGNT PCTTAD LPGSQEP E TLRK+I+LPA LRGSA+YRHGDRTPAWL Sbjct: 363 ATDAVCRKLGNTAPCTTADAPLPGSQEPTETTLRKIIALPASLRGSAIYRHGDRTPAWLG 422 Query: 425 EGRLHRSLVCECEAVTAGEVQYAVENLNVNSLLDLRRRTRVGMGTCQGELCACRAAGLLQ 484 + R HRSLVCECEAVTAGEVQYAVENL V +LLDLRRRTRVGMGTCQGELCACRAAGLL Sbjct: 423 DSRQHRSLVCECEAVTAGEVQYAVENLAVKNLLDLRRRTRVGMGTCQGELCACRAAGLLA 482 Query: 485 RFNVTTSAQSIEQLSTFLNERWKGVQPIAWGDALRESEFTRWVYQGLCGLEKEQKD 540 RFNVTTSA+S+ QLS FLNERWKGVQP+AWGDALRESEFTRWVY GLCGL+KE +D Sbjct: 483 RFNVTTSARSLTQLSEFLNERWKGVQPVAWGDALRESEFTRWVYLGLCGLQKEHQD 538 Lambda K H 0.320 0.136 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1028 Number of extensions: 30 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 542 Length of database: 540 Length adjustment: 35 Effective length of query: 507 Effective length of database: 505 Effective search space: 256035 Effective search space used: 256035 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory