Align Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized)
to candidate BWI76_RS07240 BWI76_RS07240 D-ribose transporter ATP-binding protein
Query= TCDB::P0AAG8 (506 letters) >FitnessBrowser__Koxy:BWI76_RS07240 Length = 494 Score = 502 bits (1293), Expect = e-146 Identities = 251/492 (51%), Positives = 347/492 (70%), Gaps = 2/492 (0%) Query: 12 YLLEMSGINKSFPGVKALDNVNLKVRPHSIHALMGENGAGKSTLLKCLFGIYQKDSGTIL 71 + LE GI+K FPGVKALDNV+L+VRP ++HALMGENGAGKSTL+KCL GIY+ D G I Sbjct: 4 FALEAEGISKFFPGVKALDNVSLRVRPGTVHALMGENGAGKSTLMKCLIGIYRPDKGAIR 63 Query: 72 FQGKEIDFHSAKEALENGISMVHQELNLVLQRSVMDNMWLGRYPTKGMFVDQDKMYRETK 131 +G+ + F +AL +GISM+HQELNLV +V +N+WLGR P K FVD ++ R+T+ Sbjct: 64 VKGEPVQFQDTMDALRSGISMIHQELNLVPHMTVAENIWLGREPMKYGFVDHRQLARQTQ 123 Query: 132 AIFDELDIDIDPRARVGTLSVSQMQMIEIAKAFSYNAKIVIMDEPTSSLTEKEVNHLFTI 191 + D+L+I + VG LS++ QM+EIAKA S+NA IVIMDEPTS+LTE EV HLFTI Sbjct: 124 DLLDKLNIRLSADRLVGELSIASQQMVEIAKAVSWNADIVIMDEPTSALTESEVAHLFTI 183 Query: 192 IRKLKERGCGIVYISHKMEEIFQLCDEVTVLRDGQWIATEPLAGLTMDKIIAMMVGRSLN 251 IR L+++G I+YISHKM+EIF + DE++V RDG W+ ++ T +I MVGR L Sbjct: 184 IRDLRQQGKAIIYISHKMDEIFAITDEISVFRDGTWVGSKQTTEFTRQSLITQMVGRELT 243 Query: 252 QRFPDKENKPGEVILEVRNLTSLRQPSIRDVSFDLHKGEILGIAGLVGAKRTDIVETLFG 311 Q FP N GE +L VRNL+ R+ + D++F + +GEILG+AGLVGA R++++E+LFG Sbjct: 244 QLFPKFNNAIGEEVLTVRNLS--RKGAFHDINFSVRRGEILGVAGLVGAGRSEVMESLFG 301 Query: 312 IREKSAGTITLHGKQINNHNANEAINHGFALVTEERRSTGIYAYLDIGFNSLISNIRNYK 371 + + +G + + G +N + + AI G AL+TE+R+ +G++ L + N I + Y Sbjct: 302 MEKADSGEVLIDGMPVNIDSPSTAIEKGMALLTEDRKKSGLFLVLSVLENMSIVKMPEYI 361 Query: 372 NKVGLLDNSRMKSDTQWVIDSMRVKTPGHRTQIGSLSGGNQQKVIIGRWLLTQPEILMLD 431 K G + + +M D I + +KTP I +LSGGNQQKV+I RWLL QP+IL+LD Sbjct: 362 GKTGFVQHLKMAEDCMEQIRRLNIKTPTMDQIINNLSGGNQQKVLIARWLLAQPKILILD 421 Query: 432 EPTRGIDVGAKFEIYQLIAELAKKGKGIIIISSEMPELLGITDRILVMSNGLVSGIVDTK 491 EPTRGIDVGAK EIY LI+ELA +G +I++SSE+PE+LG++DR++VM G ++GI+D + Sbjct: 422 EPTRGIDVGAKAEIYHLISELANRGVAVIMVSSELPEILGMSDRVMVMHEGRITGILDKE 481 Query: 492 TTTQNEILRLAS 503 Q IL LAS Sbjct: 482 DADQETILSLAS 493 Lambda K H 0.318 0.136 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 655 Number of extensions: 20 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 494 Length adjustment: 34 Effective length of query: 472 Effective length of database: 460 Effective search space: 217120 Effective search space used: 217120 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory