Align lysine-specific permease (characterized)
to candidate BWI76_RS19685 BWI76_RS19685 lysine transporter
Query= CharProtDB::CH_003129 (489 letters) >FitnessBrowser__Koxy:BWI76_RS19685 Length = 489 Score = 934 bits (2414), Expect = 0.0 Identities = 455/488 (93%), Positives = 478/488 (97%) Query: 1 MVSETKTTEAPGLRRELKARHLTMIAIGGSIGTGLFVASGATISQAGPGGALLSYMLIGL 60 MVS+TKTTEAPGLRRELKARHLTMIAIGGSIGTGLFVASGATISQAGPGGALLSY+LIGL Sbjct: 1 MVSDTKTTEAPGLRRELKARHLTMIAIGGSIGTGLFVASGATISQAGPGGALLSYILIGL 60 Query: 61 MVYFLMTSLGELAAYMPVSGSFATYGQNYVEEGFGFALGWNYWYNWAVTIAVDLVAAQLV 120 MVYFLMTSLGELAA+MPVSGSFATYGQNYVEEGFGFALGWNYWYNWAVTIAVDLVAAQLV Sbjct: 61 MVYFLMTSLGELAAFMPVSGSFATYGQNYVEEGFGFALGWNYWYNWAVTIAVDLVAAQLV 120 Query: 121 MSWWFPDTPGWIWSALFLGVIFLLNYISVRGFGEAEYWFSLIKVTTVIVFIIVGVLMIIG 180 M++WFPD PGW+WSALFLG++FLLN+ISV+GFGEAEYWFSLIKV TVI+FIIVGV+MI G Sbjct: 121 MTYWFPDAPGWVWSALFLGIMFLLNWISVKGFGEAEYWFSLIKVATVIIFIIVGVMMIFG 180 Query: 181 IFKGAQPAGWSNWTIGEAPFAGGFAAMIGVAMIVGFSFQGTELIGIAAGESEDPAKNIPR 240 IFKGAQPAGWSNW I +APFAGGFAAMIGVAMIVGFSFQGTELIGIAAGESE+P KNIPR Sbjct: 181 IFKGAQPAGWSNWVIDDAPFAGGFAAMIGVAMIVGFSFQGTELIGIAAGESENPEKNIPR 240 Query: 241 AVRQVFWRILLFYVFAILIISLIIPYTDPSLLRNDVKDISVSPFTLVFQHAGLLSAAAVM 300 AVRQVFWRILLFYVFAILIISLIIPYTDPSLLRNDVKDISVSPFTLVFQHAGLLSAAA+M Sbjct: 241 AVRQVFWRILLFYVFAILIISLIIPYTDPSLLRNDVKDISVSPFTLVFQHAGLLSAAAIM 300 Query: 301 NAVILTAVLSAGNSGMYASTRMLYTLACDGKAPRIFAKLSRGGVPRNALYATTVIAGLCF 360 NAVILTAVLSAGNSGMYASTRMLYTLACDGKAPRIF+KLS+GGVPRNALYATTVIAGLCF Sbjct: 301 NAVILTAVLSAGNSGMYASTRMLYTLACDGKAPRIFSKLSKGGVPRNALYATTVIAGLCF 360 Query: 361 LTSMFGNQTVYLWLLNTSGMTGFIAWLGIAISHYRFRRGYVLQGHDINDLPYRSGFFPLG 420 L+SMFGNQTVYLWLLNTSGMTGFIAWLGIAISHYRFRRGYVLQG+D+NDLPYRSGFFPLG Sbjct: 361 LSSMFGNQTVYLWLLNTSGMTGFIAWLGIAISHYRFRRGYVLQGNDLNDLPYRSGFFPLG 420 Query: 421 PIFAFILCLIITLGQNYEAFLKDTIDWGGVAATYIGIPLFLIIWFGYKLIKGTHFVRYSE 480 PIFAF+LCLIITLGQNYEAFLKDTIDWGGVAATYIGIPLFL+IWFGYKL KGT FVRYSE Sbjct: 421 PIFAFVLCLIITLGQNYEAFLKDTIDWGGVAATYIGIPLFLVIWFGYKLAKGTRFVRYSE 480 Query: 481 MKFPQNDK 488 MKFP+ K Sbjct: 481 MKFPERFK 488 Lambda K H 0.327 0.142 0.451 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1100 Number of extensions: 33 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 489 Length of database: 489 Length adjustment: 34 Effective length of query: 455 Effective length of database: 455 Effective search space: 207025 Effective search space used: 207025 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory