Align PTS system glucose-specific EIICBA component; EC 2.7.1.-; EC 2.7.1.69 (characterized)
to candidate BWI76_RS27885 BWI76_RS27885 PTS alpha-glucoside transporter subunit IICB
Query= CharProtDB::CH_001857 (699 letters) >FitnessBrowser__Koxy:BWI76_RS27885 Length = 540 Score = 258 bits (659), Expect = 5e-73 Identities = 182/538 (33%), Positives = 270/538 (50%), Gaps = 50/538 (9%) Query: 9 LQKIGRALMLPVAILPAAGILLAIGNAMQNKDMIQVLHFLSNDNVQLVAGVMESAGQIVF 68 +Q+ G A+ PV + P AGI++ I ++N + + + ++E G VF Sbjct: 5 IQRFGGAMFTPVLLFPFAGIVVGIAIMLRNPMFVGEALTAPDSLFAQIVHIIEEGGWTVF 64 Query: 69 DNLPLLFAVGVAIGLAN-GDGVAGIAAIIGYLVMNVSMSAVLLANGTI--PSDSVERAKF 125 N+PL+FAVG+ IGLA G A +A ++ +L N ++A+ + G SVE Sbjct: 65 RNMPLIFAVGLPIGLAKQAQGRACLAVLVSFLTWNYFINAMGMTWGHFFGVDFSVEPTA- 123 Query: 126 FTENHPAYVNMLGIPTLATGVFGGIIVGVLAALLFNRFYTIELPQYLGFFAGKRFVPIVT 185 M GI TL T + G I++ L L NR++ LP +LG F G FV IV Sbjct: 124 ----GSGLTMMAGIKTLDTSIIGAIVISGLVTALHNRYFDKPLPVFLGIFQGSSFVVIVA 179 Query: 186 SISALILGLIMLVIWPPIQHGLNAFSTGLVEANPTLAAFIFGVIERSLIPFGLHHIFYSP 245 ++ + + L+ WP +Q G+ + L A L +++ +ER LIP GLHH Y P Sbjct: 180 FLAMIPCAWLTLLGWPKVQMGIESLQAFLRSAG-ALGVWVYIFLERILIPTGLHHFVYGP 238 Query: 246 FWYEFFSYKSAAGEIIRGDQRIFMAQ----IKDGVQLTAGTFMTGKYPF----MMFGLPA 297 F + ++ G +++ AQ + F G + +FG Sbjct: 239 FIF--------GPAVVEGGIQVYWAQHLQAFSQSTEALKTLFPEGGFALHGNSKVFGSVG 290 Query: 298 AALAIYHEAKPQNKKLVAGIMGSAALTSFLTGITEPLEFSFLFVAPVLFAIHCLFAGLSF 357 ALA+Y A P+N+ VAG++ A LT+ L GITEPLEF+FLF++P+LFA+H + A Sbjct: 291 IALALYFTAAPENRVKVAGLLIPATLTAMLVGITEPLEFTFLFISPLLFAVHAVLAATMA 350 Query: 358 MVMQLLNVKIGMTFSGGLIDYFL----FGILPNRTAWWLV-IPVGLGLAVIYYFGFRFAI 412 VM + V +G F GGL+D FL + N + + I VG+ +Y+ FR I Sbjct: 351 TVMYICGV-VG-NFGGGLLDQFLPQNWIPMFHNHASMMFIQIGVGVCFTALYFVIFRTLI 408 Query: 413 RKFNLKTPGREDA-------AEETAAPGKTGEAGDLPYEI------LQAMGDQENIKHLD 459 + NLKTPGRE++ A+ AA GKT AG ++ LQA+G NI+ ++ Sbjct: 409 LRLNLKTPGREESEIKLYSKADYQAARGKTSAAGAADTKLGQAAGFLQALGGAGNIESIN 468 Query: 460 ACITRLRVTVNDQKKVDKDRL-KQLGASGVLEVGNNIQAIFGPR----SDGLKTQMQD 512 C TRLR+ + D K D + K LGA GV+ GN IQ I G D L+T M+D Sbjct: 469 NCATRLRIALVDMAKTQSDDVFKALGAHGVVRRGNGIQVIVGLHVPQVRDQLETLMKD 526 Lambda K H 0.323 0.141 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 904 Number of extensions: 49 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 699 Length of database: 540 Length adjustment: 37 Effective length of query: 662 Effective length of database: 503 Effective search space: 332986 Effective search space used: 332986 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.5 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory