Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate BWI76_RS07240 BWI76_RS07240 D-ribose transporter ATP-binding protein
Query= uniprot:D8IZC7 (521 letters) >FitnessBrowser__Koxy:BWI76_RS07240 Length = 494 Score = 416 bits (1070), Expect = e-121 Identities = 224/494 (45%), Positives = 319/494 (64%), Gaps = 8/494 (1%) Query: 7 LQMRGIRKSFGATLALSDMHLTIRPGEIHALMGENGAGKSTLMKVLSGVHAPDQGEILLD 66 L+ GI K F AL ++ L +RPG +HALMGENGAGKSTLMK L G++ PD+G I + Sbjct: 6 LEAEGISKFFPGVKALDNVSLRVRPGTVHALMGENGAGKSTLMKCLIGIYRPDKGAIRVK 65 Query: 67 GRPVALRDPGASRAAGINLIYQELAVAPNISVAANVFMGSELRTRLGLIDHAAMRSRTDA 126 G PV +D + +GI++I+QEL + P+++VA N+++G E + G +DH + +T Sbjct: 66 GEPVQFQDTMDALRSGISMIHQELNLVPHMTVAENIWLGRE-PMKYGFVDHRQLARQTQD 124 Query: 127 VLRQLGAGFGASDLAGRLSIAEQQQVEIARALVHRSRIVIMDEPTAALSERETEQLFNVV 186 +L +L A L G LSIA QQ VEIA+A+ + IVIMDEPT+AL+E E LF ++ Sbjct: 125 LLDKLNIRLSADRLVGELSIASQQMVEIAKAVSWNADIVIMDEPTSALTESEVAHLFTII 184 Query: 187 RRLRDEGLAIIYISHRMAEVYALADRVTVLRDGSFVGELVRDEIDSERIVQMMVGRSLSE 246 R LR +G AIIYISH+M E++A+ D ++V RDG++VG E + ++ MVGR L++ Sbjct: 185 RDLRQQGKAIIYISHKMDEIFAITDEISVFRDGTWVGSKQTTEFTRQSLITQMVGRELTQ 244 Query: 247 FYQHQRIAPADAAQLPTVMQVRALAG-GKIRPASFDVRAGEVLGFAGLVGAGRTELARLL 305 + A + V+ VR L+ G +F VR GE+LG AGLVGAGR+E+ L Sbjct: 245 LFPKFNNAIGEE-----VLTVRNLSRKGAFHDINFSVRRGEILGVAGLVGAGRSEVMESL 299 Query: 306 FGADPRSGGDILLEGRPVHIDQPRAAMRAGIAYVPEDRKGQGLFLQMAVAANATMNVASR 365 FG + G++L++G PV+ID P A+ G+A + EDRK GLFL ++V N ++ Sbjct: 300 FGMEKADSGEVLIDGMPVNIDSPSTAIEKGMALLTEDRKKSGLFLVLSVLENMSIVKMPE 359 Query: 366 HT-RLGLVRSRSLGGVARAAIQRLNVKVAHPETPVGKLSGGNQQKVLLARWLEIAPKVLI 424 + + G V+ + I+RLN+K + + LSGGNQQKVL+ARWL PK+LI Sbjct: 360 YIGKTGFVQHLKMAEDCMEQIRRLNIKTPTMDQIINNLSGGNQQKVLIARWLLAQPKILI 419 Query: 425 LDEPTRGVDIYAKSEIYQLVHRLASQGVAVVVISSELPEVIGICDRVLVMREGMITGELA 484 LDEPTRG+D+ AK+EIY L+ LA++GVAV+++SSELPE++G+ DRV+VM EG ITG L Sbjct: 420 LDEPTRGIDVGAKAEIYHLISELANRGVAVIMVSSELPEILGMSDRVMVMHEGRITGILD 479 Query: 485 GAAITQENIMRLAT 498 QE I+ LA+ Sbjct: 480 KEDADQETILSLAS 493 Lambda K H 0.320 0.135 0.378 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 625 Number of extensions: 28 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 521 Length of database: 494 Length adjustment: 34 Effective length of query: 487 Effective length of database: 460 Effective search space: 224020 Effective search space used: 224020 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory