Align Inositol transport system ATP-binding protein (characterized)
to candidate BWI76_RS07240 BWI76_RS07240 D-ribose transporter ATP-binding protein
Query= reanno::Phaeo:GFF717 (261 letters) >FitnessBrowser__Koxy:BWI76_RS07240 Length = 494 Score = 170 bits (430), Expect = 6e-47 Identities = 93/246 (37%), Positives = 146/246 (59%), Gaps = 6/246 (2%) Query: 8 IRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILFE 67 + +GI K F V AL VS+ V PG H L+G+NGAGKST +K + G+++P KG I + Sbjct: 6 LEAEGISKFFPGVKALDNVSLRVRPGTVHALMGENGAGKSTLMKCLIGIYRPDKGAIRVK 65 Query: 68 GQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANRI 127 G+P+ F D DA+ +GI+ +HQ L ++P M+V+ N ++G EP++ DH R Sbjct: 66 GEPVQFQDTMDALRSGISMIHQELNLVPHMTVAENIWLGREPMK----YGFVDHRQLARQ 121 Query: 128 TMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANV 187 T + + K+ I L D+ VG LS +Q V IA+AV + A ++I+DEPTSAL + A++ Sbjct: 122 TQDLLDKLNIRL-SADRLVGELSIASQQMVEIAKAVSWNADIVIMDEPTSALTESEVAHL 180 Query: 188 LATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAGG 247 I +R+QG A+++I+H + A+ D +V G +G+ Q + + + L M G Sbjct: 181 FTIIRDLRQQGKAIIYISHKMDEIFAITDEISVFRDGTWVGSKQTTEFTRQSLITQMV-G 239 Query: 248 QELATL 253 +EL L Sbjct: 240 RELTQL 245 Score = 102 bits (254), Expect = 2e-26 Identities = 65/222 (29%), Positives = 109/222 (49%), Gaps = 4/222 (1%) Query: 22 ALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILFEGQPLHFADPRDAIA 81 A ++ V GE + G GAG+S ++++ G+ K G++L +G P++ P AI Sbjct: 268 AFHDINFSVRRGEILGVAGLVGAGRSEVMESLFGMEKADSGEVLIDGMPVNIDSPSTAIE 327 Query: 82 AGIATV---HQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANRITMEEMRKMGIN 138 G+A + + + ++SV N + P IG H ME++R++ I Sbjct: 328 KGMALLTEDRKKSGLFLVLSVLENMSIVKMP-EYIGKTGFVQHLKMAEDCMEQIRRLNIK 386 Query: 139 LRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATIDKVRKQG 198 DQ + LSGG +Q V IAR + K+LILDEPT + V A + I ++ +G Sbjct: 387 TPTMDQIINNLSGGNQQKVLIARWLLAQPKILILDEPTRGIDVGAKAEIYHLISELANRG 446 Query: 199 VAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEEL 240 VAV+ ++ + L + DR V++ G+ G + D E + Sbjct: 447 VAVIMVSSELPEILGMSDRVMVMHEGRITGILDKEDADQETI 488 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 297 Number of extensions: 14 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 494 Length adjustment: 29 Effective length of query: 232 Effective length of database: 465 Effective search space: 107880 Effective search space used: 107880 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory