Align m-Inositol ABC transporter, ATPase component (itaA) (characterized)
to candidate BWI76_RS07240 BWI76_RS07240 D-ribose transporter ATP-binding protein
Query= reanno::pseudo3_N2E3:AO353_21385 (521 letters) >lcl|FitnessBrowser__Koxy:BWI76_RS07240 BWI76_RS07240 D-ribose transporter ATP-binding protein Length = 494 Score = 582 bits (1501), Expect = e-171 Identities = 289/491 (58%), Positives = 378/491 (76%), Gaps = 2/491 (0%) Query: 26 YLLEIINVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGELR 85 + LE +SK FPGV AL +V LRVRPG+V ALMGENGAGKSTLMK + GIY+PD G +R Sbjct: 4 FALEAEGISKFFPGVKALDNVSLRVRPGTVHALMGENGAGKSTLMKCLIGIYRPDKGAIR 63 Query: 86 LRGKPVTFDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGREQLNGFHMIDHREMHRCT 145 ++G+PV F + AL++GI+MIHQELNL+PHM++AENIW+GRE + + +DHR++ R T Sbjct: 64 VKGEPVQFQDTMDALRSGISMIHQELNLVPHMTVAENIWLGREPMK-YGFVDHRQLARQT 122 Query: 146 AQLLERLRINLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITDKEVAHLFS 205 LL++L I L + VG LSIA +QMVEIAKAVS+++DI+IMDEPTSA+T+ EVAHLF+ Sbjct: 123 QDLLDKLNIRLSADRLVGELSIASQQMVEIAKAVSWNADIVIMDEPTSALTESEVAHLFT 182 Query: 206 IIADLKAQGKGIIYITHKMNEVFSIADEVAVFRDGAYIGLQRADSMDGDSLISMMVGREL 265 II DL+ QGK IIYI+HKM+E+F+I DE++VFRDG ++G ++ SLI+ MVGREL Sbjct: 183 IIRDLRQQGKAIIYISHKMDEIFAITDEISVFRDGTWVGSKQTTEFTRQSLITQMVGREL 242 Query: 266 SQLFPVREKPIGDLLMSVRDLRLDGVFKGVSFDLHAGEILGIAGLMGSGRTNVAEAIFGI 325 +QLFP IG+ +++VR+L G F ++F + GEILG+AGL+G+GR+ V E++FG+ Sbjct: 243 TQLFPKFNNAIGEEVLTVRNLSRKGAFHDINFSVRRGEILGVAGLVGAGRSEVMESLFGM 302 Query: 326 TPSDGGEICLDGQPVRISDPHMAIEKGFALLTEDRKLSGLFPCLSVLENMEMAVLPHYAG 385 +D GE+ +DG PV I P AIEKG ALLTEDRK SGLF LSVLENM + +P Y G Sbjct: 303 EKADSGEVLIDGMPVNIDSPSTAIEKGMALLTEDRKKSGLFLVLSVLENMSIVKMPEYIG 362 Query: 386 -NGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLMTNPRILILDE 444 GF+Q + C + ++L +KTP+++Q I+ LSGGNQQK L+ARWL+ P+ILILDE Sbjct: 363 KTGFVQHLKMAEDCMEQIRRLNIKTPTMDQIINNLSGGNQQKVLIARWLLAQPKILILDE 422 Query: 445 PTRGIDVGAKAEIYRLISYLASEGMAVIMISSELPEVLGMSDRVMVMHEGDLMGTLDRSE 504 PTRGIDVGAKAEIY LIS LA+ G+AVIM+SSELPE+LGMSDRVMVMHEG + G LD+ + Sbjct: 423 PTRGIDVGAKAEIYHLISELANRGVAVIMVSSELPEILGMSDRVMVMHEGRITGILDKED 482 Query: 505 ATQERVMQLAS 515 A QE ++ LAS Sbjct: 483 ADQETILSLAS 493 Lambda K H 0.321 0.137 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 739 Number of extensions: 31 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 521 Length of database: 494 Length adjustment: 34 Effective length of query: 487 Effective length of database: 460 Effective search space: 224020 Effective search space used: 224020 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory