Align D-mannonate oxidoreductase (EC 1.1.1.57) (characterized)
to candidate BWI76_RS05645 BWI76_RS05645 fructuronate reductase
Query= ecocyc::MANNONOXIDOREDUCT-MONOMER (486 letters) >FitnessBrowser__Koxy:BWI76_RS05645 Length = 491 Score = 875 bits (2260), Expect = 0.0 Identities = 428/484 (88%), Positives = 449/484 (92%) Query: 3 TIVDSNLPVARPSWDHSRLESRIVHLGCGAFHRAHQALYTHHLLESTDSDWGICEVNLMP 62 T+ DSNLPV RP+WD SRLESRIVHLGCGAFHRAHQALYTHHLLE++DSDWGICEVNLMP Sbjct: 4 TLADSNLPVTRPAWDRSRLESRIVHLGCGAFHRAHQALYTHHLLETSDSDWGICEVNLMP 63 Query: 63 GNDRVLIENLKKQQLLYTVAEKGAESTELKIIGSMKEALHPEIDGCEGILNAMARPQTAI 122 GNDRVLIENLK QQLLYTVAEKGA+STELKIIGSMKEALHPEIDGCEGIL AM RP TAI Sbjct: 64 GNDRVLIENLKNQQLLYTVAEKGADSTELKIIGSMKEALHPEIDGCEGILRAMTRPHTAI 123 Query: 123 VSLTVTEKGYCADAASGQLDLNNPLIKHDLENPTAPKSAIGYIVEALRLRREKGLKAFTV 182 VSLTVTEKGYC DAASGQLDLNNPLI+HDL NP PKSAIGYIVEALRLRRE+GL AFTV Sbjct: 124 VSLTVTEKGYCTDAASGQLDLNNPLIQHDLANPATPKSAIGYIVEALRLRREEGLNAFTV 183 Query: 183 MSCDNVRENGHVAKVAVLGLAQARDPQLAAWIEENVTFPCTMVDRIVPAATPETLQEIAD 242 MSCDNVRENGHVAKVAVLGLAQARDPQLAAWIE + TFPCTMVDRIVPAATPETLQEIAD Sbjct: 184 MSCDNVRENGHVAKVAVLGLAQARDPQLAAWIEAHATFPCTMVDRIVPAATPETLQEIAD 243 Query: 243 QLGVYDPCAIACEPFRQWVIEDNFVNGRPDWDKVGAQFVADVVPFEMMKLRMLNGSHSFL 302 QLGVYDPCAIACEPFRQWVIED+FVNGRP WDKVGAQFV DVVPFEMMKLRMLNGSHSFL Sbjct: 244 QLGVYDPCAIACEPFRQWVIEDSFVNGRPAWDKVGAQFVEDVVPFEMMKLRMLNGSHSFL 303 Query: 303 AYLGYLGGYETIADTVTNPAYRKAAFALMMQEQAPTLSMPEGTDLNAYATLLIERFSNPS 362 AYLGYLGGYETIADT+TNPAYRKAA ALMMQEQAPTLSMPEGTDL AYATLLI RFSNPS Sbjct: 304 AYLGYLGGYETIADTMTNPAYRKAALALMMQEQAPTLSMPEGTDLQAYATLLIARFSNPS 363 Query: 363 LRHRTWQIAMDGSQKLPQRLLDPVRLHLQNGGSWRHLALGVAGWMRYTQGVDEQGNAIDV 422 LRHRTWQIAMDGSQKLPQRLLDP+RLHLQNG WRHLALGVAGWMRYT G+DEQG IDV Sbjct: 364 LRHRTWQIAMDGSQKLPQRLLDPIRLHLQNGSDWRHLALGVAGWMRYTLGIDEQGQPIDV 423 Query: 423 VDPMLAEFQKINAQYQGADRVKALLGLSGIFADDLPQNADFVGAVTAAYQQLCERGAREC 482 VDP+ AEFQ+IN +YQ A+RV ALL +SGIFA DLP N++FV AVT AYQQL +RGARE Sbjct: 424 VDPLQAEFQQINQRYQEAERVPALLAISGIFAHDLPDNSEFVNAVTQAYQQLRKRGARES 483 Query: 483 VAAL 486 VAA+ Sbjct: 484 VAAV 487 Lambda K H 0.320 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 932 Number of extensions: 30 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 491 Length adjustment: 34 Effective length of query: 452 Effective length of database: 457 Effective search space: 206564 Effective search space used: 206564 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory