Align pyruvate decarboxylase (EC 4.1.1.1) (characterized)
to candidate BWI76_RS20520 BWI76_RS20520 indolepyruvate decarboxylase
Query= BRENDA::P16467 (563 letters) >FitnessBrowser__Koxy:BWI76_RS20520 Length = 553 Score = 360 bits (925), Expect = e-104 Identities = 217/563 (38%), Positives = 308/563 (54%), Gaps = 21/563 (3%) Query: 5 TLGKYLFERLSQVNCNTVFGLPGDFNLSLLDKLYEVKGMRWAGNANELNAAYAADGYARI 64 T+G YL +RL + +FG+PGD+NL LD + + + W G ANELNAAYAADGYARI Sbjct: 6 TIGDYLLDRLVDCGIDRLFGVPGDYNLQFLDSVIAHRNLGWVGCANELNAAYAADGYARI 65 Query: 65 KGMSCIITTFGVGELSALNGIAGSYAEHVGVLHVVGVPSISSQAKQLLLHHTLGNGDFTV 124 KG ++TT+GVGELSALNGIAGSYAEHV VLH+VG P +Q + LLHHTLG+GDF+ Sbjct: 66 KGAGALLTTYGVGELSALNGIAGSYAEHVPVLHIVGAPCTGAQQRGELLHHTLGDGDFSH 125 Query: 125 FHRMSANISETTAMITDIANAPAEIDRCIRTTYTTQRPVYLGLPANLVDLNVPAKLLETP 184 F RMS I+ + A++ NA EIDR + T RP YL LPA++ AK TP Sbjct: 126 FSRMSEQITCSQAVLA-AGNACHEIDRVLSEMLTHHRPGYLMLPADV------AKAKTTP 178 Query: 185 ----IDLSLKPNDAEAEAEVVRTVVELIKDAKNPVILADACASRHDVKAETKKLMDLTQF 240 + + P D A +++ ++ +LAD A R+ ++ ++ + Sbjct: 179 PAHRLLIQGLPADENQLAGFREHAGRMLRSSRRVSLLADFLAQRYGLQNALREWVAKVPV 238 Query: 241 PVYVTPMGKGAIDEQHPRYGGVYVGTLSRPEVKKAVESADLILSIGALLSDFNTGSFSYS 300 MGKG DEQ + G Y G S E + A+E+AD I+ IG +D T F+ Sbjct: 239 AYATMLMGKGLFDEQQSGFVGTYSGIASAEETRDAIENADTIICIGTRFTDTITAGFTQH 298 Query: 301 YKTKNIVEFHSDHIKIRNATFPGVQMKFALQKLLDAIPEVVKDYKPVAVPARVPITKSTP 360 + +E +++ + F + M+ AL L++ + ++ V+ + P P Sbjct: 299 LPLEKTIEIQPFAVRVADRWFSRIPMEKALAILIELSASLAAEW--VSPNIQAPGVSGAP 356 Query: 361 ANTPMKQEWMWNHLGNFLREGDIVIAETGTSAFGINQTTFPTDVYAIVQVLWGSIGFTVG 420 + + Q+ WN + LR GDI++A+ GT+AFG P D IVQ LWGSIGFT+ Sbjct: 357 EGS-LTQKNFWNTVQKQLRPGDIILADQGTAAFGAAALKLPVDATLIVQPLWGSIGFTLP 415 Query: 421 ALLGATMAAEELDPKKRVILFIGDGSLQLTVQEISTMIRWGLKPYIFVLNNNGYTIEKLI 480 A GA +AA E +RV+L +GDG+ QLT+QE+ +M+R +P I +LNN GYT+E+ I Sbjct: 416 AAYGAQIAAAE----RRVVLIVGDGAAQLTIQELGSMLRDKQRPLILLLNNEGYTVERAI 471 Query: 481 HGPHAEYNEIQGWDHLALLPTFGAR-NYETHRVATTGEWEKLTQDKDFQDNSKIRMIEVM 539 HGP YN+I WD L F RV T E ++ D ++ ++EVM Sbjct: 472 HGPEQRYNDIALWDWNRLPDAFAPDVPSRCWRVTRTQELQEAMNSSVASD--RLTLVEVM 529 Query: 540 LPVFDAPQNLVKQAQLTAATNAK 562 LP D P L Q N++ Sbjct: 530 LPKMDIPDFLRTVTQALEERNSR 552 Lambda K H 0.318 0.134 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 763 Number of extensions: 29 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 563 Length of database: 553 Length adjustment: 36 Effective length of query: 527 Effective length of database: 517 Effective search space: 272459 Effective search space used: 272459 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory