Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate BWI76_RS03865 BWI76_RS03865 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase
Query= BRENDA::P05091 (517 letters) >lcl|FitnessBrowser__Koxy:BWI76_RS03865 BWI76_RS03865 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase Length = 488 Score = 369 bits (946), Expect = e-106 Identities = 199/469 (42%), Positives = 284/469 (60%), Gaps = 19/469 (4%) Query: 54 FPTVNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRMDASHRGRLLNRLADLIE 113 F T NP+TGEV+ +VA G ++V++AV AA+ AF W + R RL+ RL DLI+ Sbjct: 19 FHTTNPATGEVLAEVASGGADEVNQAVAAAKEAFP---KWANLPMKERARLMRRLGDLID 75 Query: 114 RDRTYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKYHGKTIPIDGDFFSYTRH 173 ++ +AA+ET D G P + V + ++A + +GKT P+D +YT Sbjct: 76 QNVPEIAAMETADTGLPIHQTKNVLIPRASHNFEFFAEVCQQMNGKTYPVDDKMLNYTLV 135 Query: 174 EPVGVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPLTALYVANLIKEAGFPPG 233 +PVGVC + PWN P + WK+ P LA GN V+K++E +PLTA + L EAG P G Sbjct: 136 QPVGVCALVSPWNVPFMTATWKVAPCLALGNTAVLKMSELSPLTADRLGELALEAGIPAG 195 Query: 234 VVNIVPGFGPTAGAAIASHEDVDKVAFTGSTEIGRVIQVAAGSSNLKRVTLELGGKSPNI 293 V+N+V G+G TAG A+ H DV V+FTG T GR I AG LK+ ++ELGGKSP + Sbjct: 196 VLNVVQGYGATAGDALVRHHDVRAVSFTGGTATGRNIMKNAG---LKKYSMELGGKSPVL 252 Query: 294 IMSDADMDWAVEQAHFALFFNQGQCCCAGSRTFVQEDIYDEFVERSVARAKSRVVGNPFD 353 I DAD++ A++ A F +F G+ C AGSR F+Q+ IY EFV+R RA VG+P D Sbjct: 253 IFEDADIERALDAALFTIFSINGERCTAGSRIFIQQSIYPEFVKRFAERANRLRVGDPTD 312 Query: 354 SKTEQGPQVDETQFKKILGYINTGKQEGAKLLCGGGIAADR----------GYFIQPTVF 403 T+ G + + ++K+ GYI G +EGA LL GG AD+ G F++PTV Sbjct: 313 PNTQVGALISQQHWEKVSGYIRLGIEEGATLLAGG---ADKPTDLPAHLRNGNFLRPTVL 369 Query: 404 GDVQDGMTIAKEEIFGPVMQILKFKTIEEVVGRANNSTYGLAAAVFTKDLDKANYLSQAL 463 DV + M +A+EEIFGPV +L FK E + AN+ YGLA+ ++T+D+ K L++ + Sbjct: 370 ADVDNRMRVAQEEIFGPVACLLPFKDEAEGLRLANDVEYGLASYIWTQDVSKVLRLARGI 429 Query: 464 QAGTVWVNCYDVFGAQSPFGGYKMSGSGRELGEYGLQAYTEVKTVTVKV 512 +AG V+VN +V + PFGG K SG+GRE GEY + + E+K V + + Sbjct: 430 EAGMVFVNTQNVRDLRQPFGGVKASGTGREGGEYSFEVFAEMKNVCISM 478 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 606 Number of extensions: 23 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 488 Length adjustment: 34 Effective length of query: 483 Effective length of database: 454 Effective search space: 219282 Effective search space used: 219282 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory