Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate BWI76_RS07615 BWI76_RS07615 betaine-aldehyde dehydrogenase
Query= BRENDA::P05091 (517 letters) >lcl|FitnessBrowser__Koxy:BWI76_RS07615 BWI76_RS07615 betaine-aldehyde dehydrogenase Length = 490 Score = 394 bits (1011), Expect = e-114 Identities = 212/484 (43%), Positives = 285/484 (58%), Gaps = 7/484 (1%) Query: 38 QIFINNEWHDAVSRKTFPTVNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRMD 97 Q++I+ + A S KTF T+NP+ GEV+ V +EDVD+AVK+A+ ++ W M Sbjct: 8 QLYIDGGYVSATSGKTFETINPANGEVLATVQAAGREDVDRAVKSAQKGQKI---WAAMS 64 Query: 98 ASHRGRLLNRLADLIERDRTYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKYH 157 A R R+L + D++ LA LETLD GKP + VD+ L YYAG Sbjct: 65 AMERSRILRKAVDILRARNDELARLETLDTGKPLSETAAVDIVTGADVLEYYAGLIPALE 124 Query: 158 GKTIPIDGDFFSYTRHEPVGVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPLT 217 G IP+ F YTR EP+GV I WN+P+ + WK PALA GN ++ K +E TPLT Sbjct: 125 GSQIPLRDSSFVYTRREPLGVVAGIGAWNYPIQIALWKSAPALAAGNAMIFKPSEVTPLT 184 Query: 218 ALYVANLIKEAGFPPGVVNIVPGFGPTAGAAIASHEDVDKVAFTGSTEIGRVIQVAAGSS 277 AL +A + +EAG P GV N++PG G G + H D+ K++FTG G+ + A +S Sbjct: 185 ALKLAEIYREAGLPAGVFNVLPGTGAETGQYLTEHPDIAKISFTGGVASGKKVMANAAAS 244 Query: 278 NLKRVTLELGGKSPNIIMSDADMDWAVEQAHFALFFNQGQCCCAGSRTFVQEDIYDEFVE 337 +LK VT+ELGGKSP I+ DA +D A + A A F++ GQ C G+R FV + F E Sbjct: 245 SLKEVTMELGGKSPLIVCEDASLDLAADIAMMANFYSSGQVCTNGTRVFVPTRLKAAFEE 304 Query: 338 RSVARAKSRVVGNPFDSKTEQGPQVDETQFKKILGYINTGKQEGAKLLCGG----GIAAD 393 + +AR G+ F T GP V +L YI TGKQEGA+LLCGG G D Sbjct: 305 KILARVARIRPGDLFAESTNFGPLVSFPHRDNVLRYIETGKQEGARLLCGGEALKGEGFD 364 Query: 394 RGYFIQPTVFGDVQDGMTIAKEEIFGPVMQILKFKTIEEVVGRANNSTYGLAAAVFTKDL 453 RG ++ PTVF D D MTI +EEIFGPVM IL + EE + RAN + YGLAA V T DL Sbjct: 365 RGAWVAPTVFTDCDDQMTIVREEIFGPVMSILSYDDEEEALRRANATEYGLAAGVVTPDL 424 Query: 454 DKANYLSQALQAGTVWVNCYDVFGAQSPFGGYKMSGSGRELGEYGLQAYTEVKTVTVKVP 513 ++A+ L L+AG W+N + A+ P GGYK SG GRE G L +YT++K++ V++ Sbjct: 425 NRAHRLIHRLEAGICWINTWGESPAEMPVGGYKHSGIGRENGVQTLHSYTQIKSIQVEMG 484 Query: 514 QKNS 517 Q S Sbjct: 485 QFQS 488 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 569 Number of extensions: 32 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 490 Length adjustment: 34 Effective length of query: 483 Effective length of database: 456 Effective search space: 220248 Effective search space used: 220248 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory