Align phenylacetaldehyde dehydrogenase (EC 1.2.1.39) (characterized)
to candidate BWI76_RS12820 BWI76_RS12820 NAD-dependent phenylacetaldehyde dehydrogenase
Query= BRENDA::P80668 (499 letters) >lcl|FitnessBrowser__Koxy:BWI76_RS12820 BWI76_RS12820 NAD-dependent phenylacetaldehyde dehydrogenase Length = 499 Score = 858 bits (2217), Expect = 0.0 Identities = 423/499 (84%), Positives = 459/499 (91%) Query: 1 MTEPHVAVLSQVQQFLDRQHGLYIDGRPGPAQSEKRLAIFDPATGQEIASTADANEADVD 60 M+ VA+L+ VQQFLDRQHGLY+DG A+SE+RL +++PATGQ IASTADAN ADVD Sbjct: 1 MSTSQVALLASVQQFLDRQHGLYLDGTQQAAESEQRLTVWNPATGQAIASTADANAADVD 60 Query: 61 NAVMSAWRAFVSRRWAGRLPAERERILLRFADLVEQHSEELAQLETLEQGKSIAISRAFE 120 AVMSAWRAFVSR WAGR PA+RERILLRFADLVEQH EELAQLETLEQGKSI ISRAFE Sbjct: 61 RAVMSAWRAFVSRSWAGRTPADRERILLRFADLVEQHGEELAQLETLEQGKSINISRAFE 120 Query: 121 VGCTLNWMRYTAGLTTKIAGKTLDLSIPLPQGARYQAWTRKEPVGVVAGIVPWNFPLMIG 180 VGCTLNWMRYTAGLTTKI+G+TLD+SIP P G RYQAWT+KEPVGVVAGIVPWNFPLMIG Sbjct: 121 VGCTLNWMRYTAGLTTKISGRTLDVSIPFPAGGRYQAWTKKEPVGVVAGIVPWNFPLMIG 180 Query: 181 MWKVMPALAAGCSIVIKPSETTPLTMLRVAELASEAGIPDGVFNVVTGSGAVCGAALTSH 240 MWKVMPALAAGCSIVIKPSETTPLT+LRVAELA+EAG+PDGVFNVVTGSGA CGAALTSH Sbjct: 181 MWKVMPALAAGCSIVIKPSETTPLTLLRVAELATEAGVPDGVFNVVTGSGAGCGAALTSH 240 Query: 241 PHVAKISFTGSTATGKGIARTAADHLTRVTLELGGKNPAIVLKDADPQWVIEGLMTGSFL 300 P VAK+SFTGSTATGK IAR AAD LTRVTLELGGKNPAIVLKDADPQWVIEGLMTGSFL Sbjct: 241 PLVAKVSFTGSTATGKQIARVAADRLTRVTLELGGKNPAIVLKDADPQWVIEGLMTGSFL 300 Query: 301 NQGQVCAASSRIYIEAPLFDTLVSGFEQAVKSLQVGPGMSPVAQINPLVSRAHCDKVCSF 360 NQGQVCAASSRIYIEAPLFDTLVSGFEQAVKSLQVGPGM +QINP+VS+AHC KV ++ Sbjct: 301 NQGQVCAASSRIYIEAPLFDTLVSGFEQAVKSLQVGPGMLESSQINPVVSQAHCAKVAAY 360 Query: 361 LDDAQAQQAELIRGSNGPAGEGYYVAPTLVVNPDAKLRLTREEVFGPVVNLVRVADGEEA 420 LD+A+ Q+AELI G GP +GYY+APTLV+NPDA LRL REEVFGPVVNLVRVADGEEA Sbjct: 361 LDEARQQKAELISGHAGPDAQGYYIAPTLVINPDAGLRLCREEVFGPVVNLVRVADGEEA 420 Query: 421 LQLANDTEYGLTASVWTQNLSQALEYSDRLQAGTVWVNSHTLIDANLPFGGMKQSGTGRD 480 L LAND+++GLTASVWT++L+QAL Y+DRLQAGTVWVNSHTLIDANLPFGGMKQSGTGRD Sbjct: 421 LLLANDSDFGLTASVWTRDLTQALSYTDRLQAGTVWVNSHTLIDANLPFGGMKQSGTGRD 480 Query: 481 FGPDWLDGWCETKSVCVRY 499 FGPDWLD WCETKSVCVRY Sbjct: 481 FGPDWLDDWCETKSVCVRY 499 Lambda K H 0.318 0.133 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 931 Number of extensions: 22 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 499 Length of database: 499 Length adjustment: 34 Effective length of query: 465 Effective length of database: 465 Effective search space: 216225 Effective search space used: 216225 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory