Align Proline-specific permease (ProY) (characterized)
to candidate BWI76_RS06245 BWI76_RS06245 proline-specific permease ProY
Query= TCDB::P37460 (456 letters) >FitnessBrowser__Koxy:BWI76_RS06245 Length = 456 Score = 876 bits (2264), Expect = 0.0 Identities = 431/456 (94%), Positives = 448/456 (98%) Query: 1 MESNNKLKRGLSTRHIRFMALGSAIGTGLFYGSADAIKMAGPSVLLAYIIGGVAAYIIMR 60 MES+NKLKRGLSTRHIRFMALGSAIGTGLFYGSADAIKMAGPSVLLAYIIGGVAAYIIMR Sbjct: 1 MESSNKLKRGLSTRHIRFMALGSAIGTGLFYGSADAIKMAGPSVLLAYIIGGVAAYIIMR 60 Query: 61 ALGEMSVHNPAASSFSRYAQENLGPLAGYITGWTYCFEILIVAIADVTAFGIYMGVWFPA 120 ALGEMSVHNPAASSFSRYAQ+ LGPLAGYITGWTYCFEILIVAIADVTAFGIYMGVWFPA Sbjct: 61 ALGEMSVHNPAASSFSRYAQDYLGPLAGYITGWTYCFEILIVAIADVTAFGIYMGVWFPA 120 Query: 121 VPHWIWVLSVVLIICAINLMSVKVFGELEFWFSFFKVATIIIMIVAGIGIIVWGIGNGGQ 180 VPHW+WVLSVVLIICA+NLMSVKVFGELEFWFSFFKVATIIIMI+AG GII+WGIGNGGQ Sbjct: 121 VPHWVWVLSVVLIICAVNLMSVKVFGELEFWFSFFKVATIIIMILAGFGIIIWGIGNGGQ 180 Query: 181 PTGIHNLWSNGGFFSNGWLGMIMSLQMVMFAYGGIEIIGITAGEAKDPEKSIPRAINSVP 240 PTGIHNLWSNGGFFSNGWLGM+MSLQMVMFAYGGIEIIGITAGEAKDPEKSIPRAINSVP Sbjct: 181 PTGIHNLWSNGGFFSNGWLGMVMSLQMVMFAYGGIEIIGITAGEAKDPEKSIPRAINSVP 240 Query: 241 MRILVFYVGTLFVIMSIYPWNQVGTNGSPFVLTFQHMGITFAASILNFVVLTASLSAINS 300 MRILVFYVGTLFVIMSIYPWNQVGTNGSPFVLTFQH+GITFAASILNFVVLTASLSAINS Sbjct: 241 MRILVFYVGTLFVIMSIYPWNQVGTNGSPFVLTFQHLGITFAASILNFVVLTASLSAINS 300 Query: 301 DVFGVGRMLHGMAEQGSAPKVFAKTSRRGIPWVTVLVMTIALLFAVYLNYIMPENVFLVI 360 DVFGVGRMLHGMAEQGSAPK+FAKTSRRG+PWVTV+VMTIALLFAVYLNYIMPENVFLVI Sbjct: 301 DVFGVGRMLHGMAEQGSAPKMFAKTSRRGVPWVTVMVMTIALLFAVYLNYIMPENVFLVI 360 Query: 361 ASLATFATVWVWIMILLSQIAFRRRLPPEEVKALKFKVPGGVVTTIAGLIFLVFIIALIG 420 ASLATFATVWVWIMILLSQIAFRRRLPPEE KALKFKVPGGV TT+ GL+FLVFII LIG Sbjct: 361 ASLATFATVWVWIMILLSQIAFRRRLPPEEAKALKFKVPGGVTTTVIGLLFLVFIIGLIG 420 Query: 421 YHPDTRISLYVGFAWIVLLLIGWIFKRRRDRQLAQA 456 YHPDTRISLYVGFAWI+LLLIGW FK RR+R+LA+A Sbjct: 421 YHPDTRISLYVGFAWIILLLIGWQFKTRRERKLAKA 456 Lambda K H 0.329 0.143 0.449 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 917 Number of extensions: 39 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 456 Length of database: 456 Length adjustment: 33 Effective length of query: 423 Effective length of database: 423 Effective search space: 178929 Effective search space used: 178929 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory