GapMind for catabolism of small carbon sources

 

Alignments for a candidate for nupC in Klebsiella michiganensis M5al

Align Nucleoside permease NupC; Nucleoside-transport system protein NupC (characterized)
to candidate BWI76_RS10810 BWI76_RS10810 NupC family nucleoside transporter

Query= SwissProt::P0AFF2
         (400 letters)



>FitnessBrowser__Koxy:BWI76_RS10810
          Length = 394

 Score =  565 bits (1457), Expect = e-166
 Identities = 293/400 (73%), Positives = 348/400 (87%), Gaps = 6/400 (1%)

Query: 1   MDRVLHFVLALAVVAILALLVSSDRKKIRIRYVIQLLVIEVLLAWFFLNSDVGLGFVKGF 60
           M + LHF+LAL V+  LA L S DRKKIRIRY+IQL+VIEV LA+FFL+++ GL  VK  
Sbjct: 1   MTQFLHFLLALVVILALAWLASYDRKKIRIRYIIQLIVIEVALAFFFLHAESGLWLVKNI 60

Query: 61  SEMFEKLLGFANEGTNFVFGSMNDQGLAFFFLKVLCPIVFISALIGILQHIRVLPVIIRA 120
           +  FE LLGFA EGTNFVFG M+++GLAF FL VLCPIVFISALIGILQH R+LP+ IR 
Sbjct: 61  ASFFESLLGFAAEGTNFVFGGMSEKGLAFIFLGVLCPIVFISALIGILQHWRILPIFIRL 120

Query: 121 IGFLLSKVNGMGKLESFNAVSSLILGQSENFIAYKDILGKISRNRMYTMAATAMSTVSMS 180
           IG LLSKVNGMGKLESFNAVSSLILGQSENFIAYK +LG +S  R++TM+ATAMSTVS+S
Sbjct: 121 IGTLLSKVNGMGKLESFNAVSSLILGQSENFIAYKGVLGDLSSRRLFTMSATAMSTVSLS 180

Query: 181 IVGAYMTMLEPKYVVAALVLNMFSTFIVLSLINPYRVDASEENIQMSNLHEGQSFFEMLG 240
           IVGAYM+ML+ KYVVAAL+LNMFSTFIVLS+INP R+  SEE I++  LHE QSFFEMLG
Sbjct: 181 IVGAYMSMLDAKYVVAALILNMFSTFIVLSIINPTRL-GSEEEIKLEKLHESQSFFEMLG 239

Query: 241 EYILAGFKVAIIVAAMLIGFIALIAALNALFATVTGWFGYSISFQGILGYIFYPIAWVMG 300
           EYILAGFKVA+I+ AMLIGFIALI+A+NALFAT+ G     +SFQ ILGY+FYP+AW++G
Sbjct: 240 EYILAGFKVAMIILAMLIGFIALISAINALFATIFG-----LSFQQILGYVFYPLAWLIG 294

Query: 301 VPSSEALQVGSIMATKLVSNEFVAMMDLQKIASTLSPRAEGIISVFLVSFANFSSIGIIA 360
           +P S+AL  GSIMATKLV+NEFVAM++LQKIA++++PR  GI+SVFLVSFANF+SIGIIA
Sbjct: 295 IPLSDALNAGSIMATKLVANEFVAMIELQKIAASMTPRGLGILSVFLVSFANFASIGIIA 354

Query: 361 GAVKGLNEEQGNVVSRFGLKLVYGSTLVSVLSASIAALVL 400
           GA+KGLNE+QGN+VSRFGL+LVYG+TLVS+LSAS A LVL
Sbjct: 355 GAIKGLNEQQGNIVSRFGLRLVYGATLVSLLSASFAGLVL 394


Lambda     K      H
   0.328    0.141    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 555
Number of extensions: 19
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 400
Length of database: 394
Length adjustment: 31
Effective length of query: 369
Effective length of database: 363
Effective search space:   133947
Effective search space used:   133947
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory