Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate BWI76_RS15205 BWI76_RS15205 succinate-semialdehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__Koxy:BWI76_RS15205 Length = 461 Score = 271 bits (694), Expect = 3e-77 Identities = 161/441 (36%), Positives = 232/441 (52%), Gaps = 18/441 (4%) Query: 29 VNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHERAATMRKAAALVRERADAI 88 VNP TG+ + + A +D A+A A+ G+ WRKV +RA T+R A +R R++A+ Sbjct: 11 VNPTTGETLSSLPWASEQQVDSAIALAEQGYRQWRKVSVAQRATTLRNVGAAMRARSEAL 70 Query: 89 AQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIVPPRNLGAQQTVVKE----- 143 AQ+++ E GKP+ +AR EV +A++ +W+A+ G P L + T+V++ Sbjct: 71 AQMISLEMGKPIAQARGEVAKSANLCDWYAEHG---------PAMLNTEATLVEDNKAVI 121 Query: 144 ---PVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAALLRAFVDAGVP 200 P+G + A PWNFPV QV+R L G S+L+K S A + F AGVP Sbjct: 122 EYRPMGAILAIMPWNFPVWQVLRGAVPILLAGNSYLLKHAPNVLGSAAMIGEIFAAAGVP 181 Query: 201 AGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKRATMELGGHAPV 260 GV G V +S +I P I VT TGS GK + + AG +K+ +ELGG P Sbjct: 182 EGVFGWVNATNDGVSQ-MINDPRIAAVTVTGSVRAGKAIGAQAGAALKKCVLELGGSDPF 240 Query: 261 IVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALVKHAEGLKVGNGL 320 IV DAD+ AVKAA +++N GQVC + RF+V I + FT+ V LK+G+ Sbjct: 241 IVLNDADLDEAVKAAVIGRYQNTGQVCAAAKRFIVEAGIAEAFTQKFVAAVAALKMGDPR 300 Query: 321 EEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPTVIANVPLDADV 380 +E +G +A + + K GA++ G E+I GN++APTV+ NV + Sbjct: 301 DEQNYIGPMARFDLRDELHEQVRATLKEGATLLLGAEKIEGAGNYYAPTVLGNVTAEMTG 360 Query: 381 FNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQRLEVGMLWINQ 440 F E FGPVA I + A+A AN FGL+ +T S LE G ++IN Sbjct: 361 FREELFGPVATITEARDADHALALANESEFGLSATVYTTSETQARRFADELECGGVFING 420 Query: 441 PATPWPEMPFGGVKDSGYGSE 461 + FGGVK SG+G E Sbjct: 421 YCASDARVAFGGVKKSGFGRE 441 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 503 Number of extensions: 30 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 461 Length adjustment: 33 Effective length of query: 448 Effective length of database: 428 Effective search space: 191744 Effective search space used: 191744 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory