Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate BWI76_RS07240 BWI76_RS07240 D-ribose transporter ATP-binding protein
Query= uniprot:Q9WXX0 (520 letters) >FitnessBrowser__Koxy:BWI76_RS07240 Length = 494 Score = 426 bits (1096), Expect = e-124 Identities = 237/498 (47%), Positives = 329/498 (66%), Gaps = 12/498 (2%) Query: 15 LKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDAGEILVN 74 L+A+GI K FPGV A+DNV V + +L+GENGAGKSTL+K L G+ +PD G I V Sbjct: 6 LEAEGISKFFPGVKALDNVSLRVRPGTVHALMGENGAGKSTLMKCLIGIYRPDKGAIRVK 65 Query: 75 GERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENYMY 134 GE V+F +DA + GIS+IHQELNL +MTVAENI+L E ++ VD + Sbjct: 66 GEPVQFQDTMDALRSGISMIHQELNLVPHMTVAENIWLGREPMK------YGFVDHRQLA 119 Query: 135 TRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEETER 194 ++++LLD + + S D LV L+ A +QMVEI KA+ I+ MDEPTS+LT E Sbjct: 120 RQTQDLLDKLNIRLSADRLVGELSIASQQMVEIAKAVSWNADIVIMDEPTSALTESEVAH 179 Query: 195 LFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMMVG 254 LF II L+ +G +++++SH++DE+ I+D I V RDG +G + EF ++I MVG Sbjct: 180 LFTIIRDLRQQGKAIIYISHKMDEIFAITDEISVFRDGTWVGSKQTTEFTRQSLITQMVG 239 Query: 255 REV-EFFPHGIETRPGEIALEVRNLKWKDKVKNVSFEVRKGEVLGFAGLVGAGRTETMLL 313 RE+ + FP GE L VRNL K +++F VR+GE+LG AGLVGAGR+E M Sbjct: 240 RELTQLFPK-FNNAIGEEVLTVRNLSRKGAFHDINFSVRRGEILGVAGLVGAGRSEVMES 298 Query: 314 VFGVNQKESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDNIVLPSLK 373 +FG+ + +SG++ ++G V I +P AI+ G+ L+ EDRK GL L ++V +N+ + + Sbjct: 299 LFGMEKADSGEVLIDGMPVNIDSPSTAIEKGMALLTEDRKKSGLFLVLSVLENMSIVKMP 358 Query: 374 K-ISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWLATNADI 432 + I + G V + E+ E ++RL+IKTP++ QI NLSGGNQQKV++A+WL I Sbjct: 359 EYIGKTGFVQHLKMAEDCMEQ-IRRLNIKTPTMDQIINNLSGGNQQKVLIARWLLAQPKI 417 Query: 433 LIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWEGEITAV 492 LI DEPTRGIDVGAKAEI+ +I ELA +G AVIM+SSELPEIL +SDR++VM EG IT + Sbjct: 418 LILDEPTRGIDVGAKAEIYHLISELANRGVAVIMVSSELPEILGMSDRVMVMHEGRITGI 477 Query: 493 LDNREKRVTQEEIMYYAS 510 LD + QE I+ AS Sbjct: 478 LDKED--ADQETILSLAS 493 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 697 Number of extensions: 35 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 494 Length adjustment: 34 Effective length of query: 486 Effective length of database: 460 Effective search space: 223560 Effective search space used: 223560 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory