GapMind for catabolism of small carbon sources

 

Aligments for a candidate for D-LDH in Shewanella oneidensis MR-1

Align Respiratory FAD-dependent D-lactate dehydrogenase Dld; EC 1.1.2.4 (characterized, see rationale)
to candidate 200692 SO1521 iron-sulfur cluster-binding protein (NCBI ptt file)

Query= uniprot:Q8EGS3
         (934 letters)



>lcl|FitnessBrowser__MR1:200692 SO1521 iron-sulfur cluster-binding
           protein (NCBI ptt file)
          Length = 914

 Score = 1842 bits (4772), Expect = 0.0
 Identities = 913/914 (99%), Positives = 914/914 (100%)

Query: 21  VTDDPVRRFAWSTDASYFRIVPEVVVHAETLEQVKLTLTVARKHNAPVTFRAAGTSLSGQ 80
           +TDDPVRRFAWSTDASYFRIVPEVVVHAETLEQVKLTLTVARKHNAPVTFRAAGTSLSGQ
Sbjct: 1   MTDDPVRRFAWSTDASYFRIVPEVVVHAETLEQVKLTLTVARKHNAPVTFRAAGTSLSGQ 60

Query: 81  AIGEGILLILGHDGFRKIEVSSDAKQITLGAAVIGSDANAVLAPLNRKIGPDPATIASAK 140
           AIGEGILLILGHDGFRKIEVSSDAKQITLGAAVIGSDANAVLAPLNRKIGPDPATIASAK
Sbjct: 61  AIGEGILLILGHDGFRKIEVSSDAKQITLGAAVIGSDANAVLAPLNRKIGPDPATIASAK 120

Query: 141 IGGIVANNASGMCCGTAQNSYQTIASAKLLFADGTELDTGCEKSKAEFAKTHGKLLQDLS 200
           IGGIVANNASGMCCGTAQNSYQTIASAKLLFADGTELDTGCEKSKAEFAKTHGKLLQDLS
Sbjct: 121 IGGIVANNASGMCCGTAQNSYQTIASAKLLFADGTELDTGCEKSKAEFAKTHGKLLQDLS 180

Query: 201 ELSHLTRHNSALAERIRKKYSIKNTTGYGINSLIDFTDPFDIINHLMVGMEGTLAFINEV 260
           ELSHLTRHNSALAERIRKKYSIKNTTGYGINSLIDFTDPFDIINHLMVGMEGTLAFINEV
Sbjct: 181 ELSHLTRHNSALAERIRKKYSIKNTTGYGINSLIDFTDPFDIINHLMVGMEGTLAFINEV 240

Query: 261 TYHTVNEAKFKASAMAVFHNMEDAARAIPLINGESVSAAELLDWPSIKAVTGKPGMPDWL 320
           TYHTVNEAKFKASAMAVFHNMEDAARAIPLINGESVSAAELLDWPSIKAVTGKPGMPDWL
Sbjct: 241 TYHTVNEAKFKASAMAVFHNMEDAARAIPLINGESVSAAELLDWPSIKAVTGKPGMPDWL 300

Query: 321 SELPALSAILLIESRADDAQTLEHYTQDVTAKLAGFDFIRPMEFSTNPAVYDKYWAMRKG 380
           SELPALSAILLIESRADDAQTLEHYTQDVTAKLAGFDFIRPMEFSTNPAVYDKYWAMRKG
Sbjct: 301 SELPALSAILLIESRADDAQTLEHYTQDVTAKLAGFDFIRPMEFSTNPAVYDKYWAMRKG 360

Query: 381 LFPIVGGERPKGTSVIIEDVAFELEHLAAAAHDITELFHKHGYPEGCIYGHALAGNFHFI 440
           LFPIVGGERPKGTSVIIEDVAFELEHLAAAAHDITELFHKHGYPEGCIYGHALAGNFHFI
Sbjct: 361 LFPIVGGERPKGTSVIIEDVAFELEHLAAAAHDITELFHKHGYPEGCIYGHALAGNFHFI 420

Query: 441 ITPAFTTQADIDRFHAFMDDIADMVINKYNGSMKAEHGTGRAVAPFVEKEWGQDAYTLMK 500
           ITPAFTTQADIDRFHAFMDDIADMVINKYNGSMKAEHGTGRAVAPFVEKEWGQDAYTLMK
Sbjct: 421 ITPAFTTQADIDRFHAFMDDIADMVINKYNGSMKAEHGTGRAVAPFVEKEWGQDAYTLMK 480

Query: 501 NIKQVFDPQGILNPGVILNDDSNIHVKNIKPCPVVDDFVDKCIECGFCEKTCPTSALNFS 560
           NIKQVFDPQGILNPGVILNDDSNIHVKNIKPCPVVDDFVDKCIECGFCEKTCPTSALNFS
Sbjct: 481 NIKQVFDPQGILNPGVILNDDSNIHVKNIKPCPVVDDFVDKCIECGFCEKTCPTSALNFS 540

Query: 561 PRQRIATLREIERLEQSGDKAAAAKMRADAKYDVIDTCAACQLCTIACPVDNSMGQLVRK 620
           PRQRIATLREIERLEQSGDKAAAAKMRADAKYDVIDTCAACQLCTIACPVDNSMGQLVRK
Sbjct: 541 PRQRIATLREIERLEQSGDKAAAAKMRADAKYDVIDTCAACQLCTIACPVDNSMGQLVRK 600

Query: 621 LRTPYISTTEQKVLDFQAKHFGAVNQVISTGFDVLGVIHKITGDGITNALMKTGRLISKE 680
           LRTPYISTTEQKVLDFQAKHFGAVNQVISTGFDVLGVIHKITGDGITNALMKTGRLISKE
Sbjct: 601 LRTPYISTTEQKVLDFQAKHFGAVNQVISTGFDVLGVIHKITGDGITNALMKTGRLISKE 660

Query: 681 VPYWNPDFPKGGKLPKPSPAKAGQETVVYFPACGGRTFGPTPKDPDNRTLPEVVVTLLER 740
           VPYWNPDFPKGGKLPKPSPAKAGQETVVYFPACGGRTFGPTPKDPDNRTLPEVVVTLLER
Sbjct: 661 VPYWNPDFPKGGKLPKPSPAKAGQETVVYFPACGGRTFGPTPKDPDNRTLPEVVVTLLER 720

Query: 741 AGYNVITPEKTRDLCCGQMWESKGDFKNADAKRQELIDVLSKMSNGGKIPVLVDALSCTY 800
           AGYNVITPEKTRDLCCGQMWESKGDFKNADAKRQELIDVLSKMSNGGKIPVLVDALSCTY
Sbjct: 721 AGYNVITPEKTRDLCCGQMWESKGDFKNADAKRQELIDVLSKMSNGGKIPVLVDALSCTY 780

Query: 801 RTLTGNPQVQITDLVEFMHDKLLDKLSINKKVNVALHLGCSARKMKLEPKMQAIANACSA 860
           RTLTGNPQVQITDLVEFMHDKLLDKLSINKKVNVALHLGCSARKMKLEPKMQAIANACSA
Sbjct: 781 RTLTGNPQVQITDLVEFMHDKLLDKLSINKKVNVALHLGCSARKMKLEPKMQAIANACSA 840

Query: 861 QVLKPAGIECCGYAGEKGLYKPEINASALRNIKKLIPVEVKEGYYANRMCEVGLTQHSGI 920
           QVLKPAGIECCGYAGEKGLYKPEINASALRNIKKLIPVEVKEGYYANRMCEVGLTQHSGI
Sbjct: 841 QVLKPAGIECCGYAGEKGLYKPEINASALRNIKKLIPVEVKEGYYANRMCEVGLTQHSGI 900

Query: 921 SYRHLAYLLEECSR 934
           SYRHLAYLLEECSR
Sbjct: 901 SYRHLAYLLEECSR 914


Lambda     K      H
   0.319    0.135    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2614
Number of extensions: 90
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 934
Length of database: 914
Length adjustment: 43
Effective length of query: 891
Effective length of database: 871
Effective search space:   776061
Effective search space used:   776061
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 57 (26.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory