Align N-succinylglutamate 5-semialdehyde dehydrogenase; EC 1.2.1.71; Succinylglutamic semialdehyde dehydrogenase; SGSD (uncharacterized)
to candidate 202865 SO3774 proline dehydrogenase/delta-1-pyrroline-5-carboxylate dehydrogenase, putative (NCBI ptt file)
Query= curated2:Q87L22 (485 letters) >lcl|FitnessBrowser__MR1:202865 SO3774 proline dehydrogenase/delta-1-pyrroline-5-carboxylate dehydrogenase, putative (NCBI ptt file) Length = 1059 Score = 190 bits (483), Expect = 2e-52 Identities = 153/471 (32%), Positives = 234/471 (49%), Gaps = 37/471 (7%) Query: 2 THWIAGEWVQGQ---GEEFVSLSPYNQ-EVIWRGNGATAEQVDQAVAAARAAFVEWKKRP 57 T W AG V GQ GE +SP++ + + + A ++QAV++A AAF W + P Sbjct: 561 TQWQAGPLVNGQPLTGEHKTIVSPFDTTQTVGQVAFADKAAIEQAVSSAHAAFGSWTRTP 620 Query: 58 FAEREAIVLAFAEKVKENSEKIAEVIAKETGKPIWETRTEA----------AAMAGKIAI 107 R + + A+ ++EN E++ + +E GK I + E A A K+ Sbjct: 621 VEVRASALQKLADLLEENREELIALCTREAGKSIQDGIDEVREAVDFCRYYAVQAKKLMS 680 Query: 108 SIRAYHDRTGEATREAAGNQIVLRHRPLGVMAVFGPYNFPGHLPNGHIVPALLAGNTVVF 167 TGE N++ L+ R GV P+NFP + G + AL AGNTVV Sbjct: 681 KPELLPGPTGEL------NELFLQGR--GVFVCISPWNFPLAIFLGQVSAALAAGNTVVA 732 Query: 168 KPSEQTPWTGELAMKLWEEAGLPKGVINLVQGAKET-GIALADAKGIDGILFTGSANTGH 226 KP+EQT G A++L +AG+P V+ + G T G AL + I G+ FTGS T Sbjct: 733 KPAEQTSIIGYRAVQLAHQAGIPTDVLQYLPGTGATVGNALTADERIGGVCFTGSTGTAK 792 Query: 227 ILHRQFAGQPGKMLAL--EMGGNNPMVISDNYGDLDATVYTIIQSAFISAGQRCTCARRL 284 +++R A + G ++ L E GG N MV+ D+ + V ++ S+F SAGQRC+ R L Sbjct: 793 LINRTLANREGAIIPLIAETGGQNAMVV-DSTSQPEQVVNDVVSSSFTSAGQRCSALRVL 851 Query: 285 YVPFGEKGDALITKLVEATKNIRMDQPFAEPAPFMGPQISVAAAKFILDAQAN----LQS 340 ++ + D +I L A + + P + +GP I A AK LDA + + Sbjct: 852 FLQ-EDIADRVIDVLQGAMDELVIGNPSSIKTD-VGPVID-ATAKANLDAHIDHIKQVGK 908 Query: 341 LGGESLIEAKAGEAAFVSPGIIDVTNIAELPDEEYFGPLLQVVRYEGLDKA--VELANDT 398 L + + A FV+P +++ +I L ++E+FGP+L V+RY+ + A ++ N T Sbjct: 909 LIKQMSLPAGTENGHFVAPTAVEIDSIKVL-EKEHFGPILHVIRYKASELAHVIDEINST 967 Query: 399 RFGLSAGLVSTDDQEWEYFVDHIRAGIVNRNRQLTGA-SGDAPFGGPGASG 448 FGL+ G+ S ++ D + G V NR GA G PFGG G SG Sbjct: 968 GFGLTLGIHSRNEGHALEVADKVNVGNVYINRNQIGAVVGVQPFGGQGLSG 1018 Lambda K H 0.316 0.134 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1110 Number of extensions: 55 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 485 Length of database: 1059 Length adjustment: 39 Effective length of query: 446 Effective length of database: 1020 Effective search space: 454920 Effective search space used: 454920 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory