Align succinate-semialdehyde dehydrogenase (NADP+) [EC: 1.2.1.16] (characterized)
to candidate 200453 SO1275 succinate-semialdehyde dehydrogenase (NCBI ptt file)
Query= reanno::MR1:200453 (482 letters) >FitnessBrowser__MR1:200453 Length = 482 Score = 953 bits (2463), Expect = 0.0 Identities = 482/482 (100%), Positives = 482/482 (100%) Query: 1 MLLNDPSLLRQQCYINGQWCDANSKETVAITNPATGAVIACVPVMGQAETQAAIAAAEAA 60 MLLNDPSLLRQQCYINGQWCDANSKETVAITNPATGAVIACVPVMGQAETQAAIAAAEAA Sbjct: 1 MLLNDPSLLRQQCYINGQWCDANSKETVAITNPATGAVIACVPVMGQAETQAAIAAAEAA 60 Query: 61 LPAWRALTAKERGAKLRRWFELLNENSDDLALLMTSEQGKPLTEAKGEVTYAASFIEWFA 120 LPAWRALTAKERGAKLRRWFELLNENSDDLALLMTSEQGKPLTEAKGEVTYAASFIEWFA Sbjct: 61 LPAWRALTAKERGAKLRRWFELLNENSDDLALLMTSEQGKPLTEAKGEVTYAASFIEWFA 120 Query: 121 EEAKRIYGDTIPGHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVK 180 EEAKRIYGDTIPGHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVK Sbjct: 121 EEAKRIYGDTIPGHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVK 180 Query: 181 PAPQTPFTALALAVLAERAGIPAGVFSVITGDAIAIGNEMCTNPIVRKLSFTGSTNVGIK 240 PAPQTPFTALALAVLAERAGIPAGVFSVITGDAIAIGNEMCTNPIVRKLSFTGSTNVGIK Sbjct: 181 PAPQTPFTALALAVLAERAGIPAGVFSVITGDAIAIGNEMCTNPIVRKLSFTGSTNVGIK 240 Query: 241 LMAQCAPTLKKLSLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQAG 300 LMAQCAPTLKKLSLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQAG Sbjct: 241 LMAQCAPTLKKLSLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQAG 300 Query: 301 VYDEFAEKLSMAVAKLKVGEGIIAGVTTGPLINAAAVEKVQSHLEDAIKKGATVLAGGKV 360 VYDEFAEKLSMAVAKLKVGEGIIAGVTTGPLINAAAVEKVQSHLEDAIKKGATVLAGGKV Sbjct: 301 VYDEFAEKLSMAVAKLKVGEGIIAGVTTGPLINAAAVEKVQSHLEDAIKKGATVLAGGKV 360 Query: 361 HELGGNFFEPTVLTNADKSMRVAREETFGPLAPLFKFNDVDDVIKQANDTEFGLAAYFYG 420 HELGGNFFEPTVLTNADKSMRVAREETFGPLAPLFKFNDVDDVIKQANDTEFGLAAYFYG Sbjct: 361 HELGGNFFEPTVLTNADKSMRVAREETFGPLAPLFKFNDVDDVIKQANDTEFGLAAYFYG 420 Query: 421 RDISLVWKVAESLEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKYGIEEYLEIKYICM 480 RDISLVWKVAESLEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKYGIEEYLEIKYICM Sbjct: 421 RDISLVWKVAESLEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKYGIEEYLEIKYICM 480 Query: 481 SV 482 SV Sbjct: 481 SV 482 Lambda K H 0.318 0.133 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 902 Number of extensions: 20 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 482 Length adjustment: 34 Effective length of query: 448 Effective length of database: 448 Effective search space: 200704 Effective search space used: 200704 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory