GapMind for catabolism of small carbon sources

 

Alignments for a candidate for glt in Shewanella oneidensis MR-1

Align Sodium:dicarboxylate symporter (characterized, see rationale)
to candidate 202663 SO3562 proton/glutamate symporter, putative (NCBI ptt file)

Query= uniprot:A1S570
         (437 letters)



>FitnessBrowser__MR1:202663
          Length = 413

 Score =  294 bits (752), Expect = 4e-84
 Identities = 166/413 (40%), Positives = 245/413 (59%), Gaps = 16/413 (3%)

Query: 7   SKIGLTGKILIGMGAGILIGLLLRNFFGGSEWVQDYITEGFFHVIGTIFINSLKMLVVPL 66
           S+I    K+L G   G L+G+LL    G S  V           +G +FI+++KMLV PL
Sbjct: 7   SRIPFWQKVLTGFILGALVGVLL----GESATV--------LKPLGDLFISAIKMLVAPL 54

Query: 67  VFISLVCGTCSLSEPSKLGRLGGKTLAFYLFTTAIALVVAISAAVLVQPGNASLASESMQ 126
           VF S+V    SL   + L RL  KTL  ++ T  IA ++ ++   L+  G  ++   + +
Sbjct: 55  VFCSIVVSITSLGSQTNLKRLSIKTLGMFMLTGTIASLIGLAVGSLIDMGG-TMQLATTE 113

Query: 127 YSAKEAPSLADVLINIVPSNPMKALSEGNMLQIIIFAVIFGFAISHIGERGRRVAALFDD 186
              +  P  A VL++++P NP  +L+EG +LQII+FA + G AI+ +GE+   +    + 
Sbjct: 114 VRERNIPGFAQVLLDMIPINPFASLAEGKVLQIIVFAALVGIAINKVGEKAEPLKRTIEA 173

Query: 187 LNEVIMRVVTLIMQLAPYGVFALMGKLALTLGMETLESVIKYFMLVLVVLLFHGFVVYPT 246
             EV+ ++  ++++L P GVF LM  +    G+ TL  + K+   + +  L H   VY  
Sbjct: 174 GAEVMFQLTRMVLKLTPIGVFGLMAWVVGEYGLSTLLPLGKFIAAIYIAALVHMIFVYGG 233

Query: 247 LLKLFSGLSPLMFIRKMRDVQLFAFSTASSNATLPVTMEASEHRLGADNKVASFTLPLGA 306
            +KL +GLSP+ F RK    QL AFST+SS  TLP +  A E  +G   + ++F +PLGA
Sbjct: 234 FVKL-AGLSPIQFFRKALPAQLVAFSTSSSFGTLPASTRAVE-TMGVSKRYSAFVMPLGA 291

Query: 307 TINMDGTA-IMQGVATVFIAQVFGIDLTITDYAMVVMTATLASIGTAGVPGVGLVMLAMV 365
           T+NMDG   I   +A +FIAQ++GI L   DY M+ +TAT+AS+GTAGVPG  +VML + 
Sbjct: 292 TMNMDGCGGIYPAIAAIFIAQIYGIPLDTLDYVMIAVTATIASVGTAGVPGSAMVMLTVT 351

Query: 366 LNQVGLPVEGIALILGVDRMLDMVRTAVNVTGDTVATVVIAKSEGALNEAVFN 418
           L  +GLP+EGIA I  +DR++DM+RT  NVTGD +  VVI KSE  L+   FN
Sbjct: 352 LGVIGLPLEGIAFIASIDRIIDMIRTTTNVTGDMMTAVVIGKSENELDVEQFN 404


Lambda     K      H
   0.325    0.139    0.388 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 421
Number of extensions: 14
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 437
Length of database: 413
Length adjustment: 32
Effective length of query: 405
Effective length of database: 381
Effective search space:   154305
Effective search space used:   154305
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.0 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory