Align Alpha-ketoglutaric semialdehyde dehydrogenase; alphaKGSA dehydrogenase; 2,5-dioxovalerate dehydrogenase; EC 1.2.1.26 (characterized)
to candidate 202599 SO3496 aldehyde dehydrogenase (NCBI ptt file)
Query= SwissProt::P42236 (488 letters) >lcl|FitnessBrowser__MR1:202599 SO3496 aldehyde dehydrogenase (NCBI ptt file) Length = 498 Score = 290 bits (742), Expect = 8e-83 Identities = 175/480 (36%), Positives = 273/480 (56%), Gaps = 13/480 (2%) Query: 13 FINGEWVKSQSGDMVKVENPADVNDIVGYVQNSTAEDVERAVTAANEA--KTAWRKLTGA 70 FINGE+ + SG+ +P D ++ V + D AV A E W K Sbjct: 24 FINGEYRDASSGNTFDCISPID-GRLLAPVASCDLMDANIAVANAREVFDSGVWSKAAPV 82 Query: 71 ERGQYLYKTADIMEQRLEEIAACATREMGKTLPEAKGETARGIAILRYYAGEGMRKTGDV 130 +R Q + + A+++E+ E+A T +MGK + +K G A ++GE + K D Sbjct: 83 KRKQVMIRFAELLEENANELALLETLDMGKPIRFSKAVDVAGAARAIRWSGEAIDKLYDE 142 Query: 131 IPSTDKDALMFTTRVPLGVVGVISPWNFPVAIPIWKMAPALVYGNTVVIKPATETAVTCA 190 + T + + TR P+GVV I PWNFP+ + WK+ PALV GN+V++KP+ ++ +T Sbjct: 143 LAPTAHNEIGMITREPVGVVAAIVPWNFPLLMACWKLGPALVTGNSVILKPSEKSPLTAI 202 Query: 191 KIIACFEEAGLPAGVINLVTGPGSVVGQGLAEHDGVNAVTFTGSNQVGK-IIGQAALARG 249 +I +AG+P GV+N++ G G VG+ LA H V+ + FTGS ++ K ++ A + Sbjct: 203 RIAELAVQAGIPKGVLNVLPGYGHTVGKALALHMDVDTLVFTGSTKIAKQLMIYAGESNM 262 Query: 250 AKYQLEMGGKNPVIVADDA-DLEAAAEAVITGAFRSTGQKCTATSRVIVQSGIYERFKEK 308 + LE GGK+P IV +DA DL+AAA A + G+ CTA SR++V+SG+ + Sbjct: 263 KRVWLEAGGKSPNIVFNDAPDLKAAAVAAAEAIGFNQGEVCTAGSRLLVESGVKDELVGL 322 Query: 309 LLQRTKDITIGDSLKEDVWMGPIASKNQLDNCLSYIEKGKQEGASLLIGGEKL--ENGKY 366 + + G L+ G + K QLD LSYI+ G+ EGASL+ GG+++ E G Sbjct: 323 IAEELASWQPGHPLEPTTVSGAVVDKQQLDTILSYIKAGQNEGASLVYGGQQVLAETG-- 380 Query: 367 QNGYYVQPAIFDNVTSEMTIAQEEIFGPVIALIKVDSIEEALNIANDVKFGLSASIFTEN 426 G YVQP +F NV ++M IA EEIFGPV+++I+ + +EEA+ IAND +GL+A ++T + Sbjct: 381 --GVYVQPTVFSNVKNQMKIASEEIFGPVLSVIEFNGMEEAIAIANDTIYGLAAGVWTAD 438 Query: 427 IGRMLSFIDEIDAGLVRINAESAGVELQAPFGGMKQSSSHSREQGEAAKDFFTAIKTVFV 486 I + + +G+V IN G ++ APFGG KQ S + R++ + D +T IK ++ Sbjct: 439 ISKAHKTAKALRSGMVWINHYDGG-DMTAPFGGYKQ-SGNGRDKSLHSFDKYTEIKATWI 496 Lambda K H 0.315 0.132 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 581 Number of extensions: 27 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 488 Length of database: 498 Length adjustment: 34 Effective length of query: 454 Effective length of database: 464 Effective search space: 210656 Effective search space used: 210656 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory