Align phenylacetate-CoA ligase (EC 6.2.1.30) (characterized)
to candidate 201721 SO2581 long-chain-fatty-acid--CoA ligase (NCBI ptt file)
Query= BRENDA::A7KUK6 (562 letters) >lcl|FitnessBrowser__MR1:201721 SO2581 long-chain-fatty-acid--CoA ligase (NCBI ptt file) Length = 557 Score = 207 bits (528), Expect = 7e-58 Identities = 166/533 (31%), Positives = 252/533 (47%), Gaps = 49/533 (9%) Query: 46 TYKSLRDASLDFGKGLKALYEWRKGDVLALFTPNSIDTPVVMWGTLWAGGTISPANPGYT 105 TY+ L + S F L+ + +KGD +AL PN + P+ ++G L AG + NP YT Sbjct: 50 TYRKLEERSRAFAAYLQNELKLQKGDRVALMMPNLLQYPIALFGILRAGMVVVNVNPLYT 109 Query: 106 VDELAFQLKNSHAKGLVTQASVLPVAREAAKKVGMPEDRIILIGDQRDPDAR-------- 157 EL QL +S AK +V ++ E + + I +GD R Sbjct: 110 PRELKHQLIDSGAKAIVVVSNFARTLEEVVDQTPVKSVIITGLGDLLSAPKRTLVNFVVK 169 Query: 158 ----------VKHFTSVRNISGATRYRKQKITPA---KDVAFLVYSSGTTGVPKGVMISH 204 + H S+R R R Q + P D+AFL Y+ GTTGV KG M++H Sbjct: 170 YIKKLVPKYDLPHALSMRETLSRGR-RMQYVKPVITGDDLAFLQYTGGTTGVSKGAMLTH 228 Query: 205 RNIVANIRQQFIAEGEMLSWNGGPDGKGDRVLAFLPFYHIYGLTCLITQALYKG-YHLIV 263 N+VAN+ Q A L DG + V+ LP YHI+ LT L+KG +L++ Sbjct: 229 SNVVANVLQANGAYSPALR-----DGS-EFVVTALPLYHIFALTVNCLLFLHKGSQNLLI 282 Query: 264 MSKFDIEKWCAHVQNYRCSFSYIVPPVVLLLGKHPVVDKYDLSSLRMMNSGAAPLTQELV 323 + DI + A ++ Y + V + L + D S L++ G + + + Sbjct: 283 TNPRDIPGFVAELKKYPFTALTGVNTLFNALVNSSDFSELDFSRLKLSIGGGMAVQKAVA 342 Query: 324 EAVYSRIKVGIKQGYGLSETSP--TTHSQRWEDWREAMGSVGRLMPNMQAKYMTMPEDGS 381 + + K + +GYGL+E SP T + + GS+G P+ + + +D Sbjct: 343 DKWQNITKTRLLEGYGLTEASPLLTCCPYNLDGYN---GSIGFPAPST---LIQVRDDAG 396 Query: 382 EPKEVGEGEVGELYLKGPNVFLGYHENPEATKGCLSEDGWFQTGDVGYQDAKGNFYITDR 441 + +GE GEL+ KGP + GY + PE T + DGW TGD+GY D +G FYI DR Sbjct: 397 NV--LPQGETGELFGKGPQIMKGYWQRPEETAKVIDNDGWLATGDIGYMDEQGFFYIVDR 454 Query: 442 VKELIKYKGFQVPPAELEGYLVDNDAIDDVAVIGIESETHGSEVPMACVVRSAKSKSSGT 501 K++I GF V P E+E + + + +VA +G+ ++ G E+ VV+ KS + Sbjct: 455 KKDMILVSGFNVFPNEVEEVVALHPKVIEVAAVGVPNDASG-ELVKVFVVKKDKSLT--- 510 Query: 502 SEKDEAARIIKWLDSKVASHKRLRGGVHFVDEIPKNPSGKILRRILKQKFKGA 554 A IIK + +K + V F DE+PK GKILRR L+ + K A Sbjct: 511 -----AEDIIKHCRVHLTGYK-VPKLVEFRDELPKTNVGKILRRELRDEVKRA 557 Lambda K H 0.317 0.136 0.410 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 695 Number of extensions: 38 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 562 Length of database: 557 Length adjustment: 36 Effective length of query: 526 Effective length of database: 521 Effective search space: 274046 Effective search space used: 274046 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory