Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate 200026 SO0840 acetyl-CoA carboxylase multifunctional enzyme accADC, carboxyl transferase subunit alpha/carboxyl transferase subunit beta/biotin carboxylase (NCBI ptt file)
Query= metacyc::MONOMER-13597 (509 letters) >FitnessBrowser__MR1:200026 Length = 1517 Score = 281 bits (720), Expect = 9e-80 Identities = 165/455 (36%), Positives = 252/455 (55%), Gaps = 13/455 (2%) Query: 1 MPPFSRVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHT---KYADEAYYIGKAP 57 M P ++VLV RG A ++++ + + + V S+ D AV K +D+ +G Sbjct: 937 MKPINKVLVHARGCTAVKLIRKAHDNNINVVLVASDPDMTAVPADMLKESDKLVCLGGNT 996 Query: 58 ALDSYLNIEHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKD 117 + +SYLN ++ AE VDA+HPG GFLSE+ +FA G+ F+GPS M + + Sbjct: 997 SDESYLNAYSVLKVAEYEQVDALHPGIGFLSESPQFAALCVNNGVNFVGPSVHSMTTMGN 1056 Query: 118 KLDGKRLANMAGVPTAPGSDGPVTSIDEALKLAEKIGYPIMVKAASGGGGVGITRVDNQD 177 K + + + VP PGS G +T+ ++A+ +A +IGYP+++KA GGGG GI V + Sbjct: 1057 KSNAIKTSQAQNVPVVPGSHGILTNAEQAVNVASEIGYPVLLKAVQGGGGKGIQVVKRPE 1116 Query: 178 QLMDVWERNKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRN 237 ++ ++++ A AFG DL++EKY + RHIE QL+ DK+G+ V R+C++QR N Sbjct: 1117 DMIGLFQKTATEAAAAFGNGDLYLEKYVTSLRHIEVQLLRDKFGHAKVLGLRDCSVQRNN 1176 Query: 238 QKLIEEAPSPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRDFYFLELNKRLQ 297 QK++EE+ S L E ++ + G +Y GT E ++ + + YF+E+N RLQ Sbjct: 1177 QKVVEESGSTMLPDELKKQVLAYTRALGDATDYMGAGTVEFIYNLDANEVYFMEMNTRLQ 1236 Query: 298 VEHPTTELIFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTG-- 355 VEHP TE ID+V Q +AAG S E L + G A+E R+ AE A + G Sbjct: 1237 VEHPVTEATSGIDIVSAQFDIAAGR----SIEHLEPKEIGYAMEVRVTAEKAALDSHGVL 1292 Query: 356 ----SSGFVTYYREPTGPGVRVDSGIESGSYVPPYYDSLVSKLIVYGESREYAIQAGIRA 411 + G +T P P V + S G V PYYDSL++++I+ GE+RE I Sbjct: 1293 QLIPNPGKITECVFPDHPDVEIISIAAPGKEVSPYYDSLIAQVIMRGENREDVIAKLHAY 1352 Query: 412 LADYKIGGIKTTIELYKWIMQDPDFQEGKFSTSYI 446 L + GI T I L K I+ D F+EG + T+Y+ Sbjct: 1353 LDSVVLKGIATNIPLLKLILSDGTFKEGVYDTNYL 1387 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1470 Number of extensions: 67 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 1517 Length adjustment: 42 Effective length of query: 467 Effective length of database: 1475 Effective search space: 688825 Effective search space used: 688825 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 56 (26.2 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory